In Less Than a Year, So Much New: Launching Version 12.1 of Wolfram Language & Mathematica

We’re pleased that despite the coronavirus pandemic and its impact on so many people and businesses we’re still able to launch today as planned… (Thanks to our dedicated team and the fact that remote working has been part of our company for decades…)

The Biggest .1 Release Ever

It’s always an interesting time. We’re getting ready to wrap up a .1 version—to release the latest fruits of our research and development efforts. “Is it going to be a big release?”, I wonder. Of course, I know we’ve done a lot of work since we released Version 12.0 last April. All those design reviews (many livestreamed). All those new things we’ve built and figured out.

But then we start actually making the list for the new version. And—OMG—it goes on and on. Different teams are delivering on this or that project that started X years ago. A new function is being added for this. There’s some new innovation about that. Etc.

We started this journey a third of a century ago when we began the development of Version 1.0. And after all these years, it’s amazing how the energy of each new release seems to be ever greater.

And as we went on making the list for Version 12.1 we wondered, “Will it actually be our biggest .1 release ever?”. We finally got the answer: “Yes! And by a lot”.

Counting functions isn’t always the best measure, but it’s an indication. And in Version 12.1 there are a total of 182 completely new functions—as well as updates and enhancements to many hundreds more.

Look at It Now: HiDPI

Back in 1988 when we released Version 1.0 a typical computer display was maybe 640 pixels across (oh, and it was a CRT). And I was recently using some notebooks of mine from the 1990s (yes, they still work, which is spectacular!), and I was amazed at what a small window size they were made for. But as I write this today, I’m looking at two 3000-pixel displays. And 4k displays aren’t uncommon. So one of the things we’ve done for Version 12.1 is to add systemwide support for the new world of very-high-resolution displays.

One might think that would be easy, and would just “come with the operating system”. But actually it’s taken two years of hard work to deliver full HiDPI support. Well over a thousand carefully designed icons and other assets went from being bitmaps to being work-at-any-size algorithmic graphics. Everything about rasterization (not just for Rasterize, but for 3D graphics textures, etc. etc.) had to be redone. Sizes of things—and their interactions with the tower of kludges that operating systems have introduced over the years—had to be respecified and rethought.

But now it’s done. And we’re ready for displays of any resolution:

By the way, talking of displays, another “infrastructure” enhancement in Version 12.1 is moving to Metal and Direct3D 11 for 3D graphics rendering on macOS and Windows. Right now these just make 3D graphics modestly faster. But they also lay the groundwork for full multithreaded rendering, as well as VR, AR and more.

The Beginning of Video Computation

We’ve been working towards it for nearly 15 years… but finally it’s here: computation with video! We introduced images into the language in 2008; audio in 2016. But now in Version 12.1 we for the first time have computation with video. There’ll be lots more coming in future releases, but there’s already quite a bit in 12.1.

So… just like Image and Audio, which symbolically represent images and audio, we now have Video.

This asks for five frames from a video:

VideoFrameList[
 
 Video["ExampleData/Caminandes.mp4", Appearance -> Automatic, 
 
  AudioOutputDevice -> Automatic, SoundVolume -> Automatic], 5]

This asks to make a time series of the mean color of every frame:

VideoTimeSeries[Mean, 
 
 Video["ExampleData/Caminandes.mp4", Appearance -> Automatic, 
 
  AudioOutputDevice -> Automatic, SoundVolume -> Automatic]]

And then one can just plot the time series:

DateListPlot[%, 
 
 PlotStyle -> {RGBColor[1, 0, 0], RGBColor[0, 1, 0], RGBColor[
 
   0, 0, 1]}]

Video is a complicated area, with lots of different encodings optimized for different purposes. In Version 12.1 we’re supporting more than 250 of them, for import, export and transcoding. You can refer to a video on the web as well:

Video["http://exampledata.wolfram.com/cars.avi"]

And the big thing is that video is now getting integrated into everything. So, for example, you can immediately use image processing or audio processing or machine learning functions on video. Here’s an example plotting the location of cars in the video above:

v = Video["http://exampledata.wolfram.com/cars.avi"]

ts = VideoTimeSeries[Point[ImagePosition[#, Entity["Word", "car"]]] &,
 
   v]

HighlightImage[
 
 VideoExtractFrames[v, Quantity[5, "Seconds"]], {PointSize[Medium], 
 
  Values[ts]}]

Let’s say you’ve got a Manipulate, or an animation (say from ListAnimate). Well, now you can just immediately make a video of it:

Video[CloudGet["https://wolfr.am/L9r00rk5"]]

You can add an audio track, then export the whole thing directly to a file, the cloud, etc.

So is this new video capability really industrial strength? I’ve been recording hundreds of hours of video in connection with a new project I’m working on. So I decided to try our new capabilities on it. It’s spectacular! I could take a 4-hour video, and immediately extract a bunch of sample frames from it, and then—yes, in a few hours of CPU time—“summarize the whole video”, using SpeechRecognize to do speech-to-text on everything that was said and then generating a word cloud:

Speaking of audio, there’s new stuff in Version 12.1 there too. We’ve redone the GUI for in-notebook Audio objects. And we’ve introduced SpeechInterpreter, which is the spoken analog of the Interpreter function, here taking an audio object and returning what airline name was said in it:

SpeechInterpreter["Airline"][CloudGet["https://wolfr.am/L9r410jA"]]

In Version 12.0 we introduced the important function TextCases for extracting from text hundreds of kinds of entities and “text content types” (which as of 12.1 now have their own documentation pages). In 12.1 we’re also introducing SpeechCases, which does the same kind of thing for audio speech.

A Computer Science Story: DataStructure

One of our major long-term projects is the creation of a full compiler for the Wolfram Language, targeting native machine code. Version 12.0 was the first exposure of this project. In Version 12.1 there’s now a spinoff from the project—which is actually a very important project in its own right: the new DataStructure function.

We’ve curated many kinds of things in the past: chemicals, equations, movies, foods, import-export formats, units, APIs, etc. And in each case we’ve made the things seamlessly computable as part of the Wolfram Language. Well, now we’re adding another category: data structures.

Think about all those data structures that get mentioned in textbooks, papers, libraries, etc. Our goal is to have all of them seamlessly usable directly in the Wolfram Language, and accessible in compiled code, etc. Of course it’s huge that we already have a universal “data structure”: the symbolic expressions in the Wolfram Language. And internal to the Wolfram Language we’ve always used all sorts of data structures, optimized for different purposes, and automatically selected by our algorithms and meta-algorithms.

But now with DataStructure there’s something new. If you have a particular kind of data structure you want to use, you can just ask for it by name, and use it.

Here’s how you create a linked list data structure:

ds = CreateDataStructure["LinkedList"]

Append a million random integers to the linked list (it takes 380 ms on my machine):

Do[ds["Append", RandomInteger[]], 10^6]

Now there’s immediate visualization of the structure:

ds["Visualization"]

Here’s the numerical mean of all the values:

Mean[N[Normal[ds]]]

Like so much of what we do DataStructure is set up to span from small scale and pedagogical to large scale and full industrial strength. Teaching a course about data structures? Now you can immediately use the Wolfram Language, storing everything you do in notebooks, automatically visualizing your data structures, etc. Building large-scale production code? Now you can have complete control over optimizing the data structures you’re using.

How does DataStructure work? Well, it’s all written in the Wolfram Language, and compiled using the compiler (which itself is also written in the Wolfram Language).

In Version 12.1 we’ve got most of the basic data structures covered, with various kinds of lists, arrays, sets, stacks, queues, hash tables, trees, and more. And here’s an important point: each one is documented with the running time for its various operations (“O(n)”, “O(n log(n))”, etc.), and the code ensures that that’s correct.

It’s pretty neat to see classic algorithms written directly for DataStructure.

Create a binary tree data structure (and visualize it):

(ds = CreateDataStructure["BinaryTree", 
 
    3 -> {1 -> {0, Null}, Null}])["Visualization"]

Here’s a function for rebalancing the tree:

RightRotate[y_] :=
 
 Module[{x, tmp},
 
  x = y["Left"]; tmp = x["Right"]; x["SetRight", y]; 
 
  y["SetLeft", tmp]; x]

Now do it, and visualize the result:

RightRotate[ds]["Visualization"]

The Asymptotic Superfunction

You’ve got a symbolic math expression and you want to figure out its rough value. If it’s a number you just use N to get a numerical approximation. But how do you get a symbolic approximation?

Ever since Version 1.0—and, in the history of math, ever since the 1600s—there’s been the idea of power series: find an essentially polynomial-like approximation to a function, as Series does. But not every mathematical expression can be reasonably approximated that way. It’s difficult math, but it’s very useful if one can make it work. We started introducing “asymptotic approximation” functions for specific cases (like integrals) in Version 11.3, but now in 12.1 we’re introducing the asymptotic superfunction Asymptotic.

Consider this inverse Laplace transform:

InverseLaplaceTransform[1/(s Sqrt[s^3 + 1]), s, t]

There’s no exact symbolic solution for it. But there is an asymptotic approximation when t is close to 0:

Asymptotic[InverseLaplaceTransform[1/(s Sqrt[s^3 + 1]), s, t], t -> 0]

Sometimes it’s convenient to not even try to evaluate something exactly—but just to leave it inactive until you give it to Asymptotic:

Asymptotic[
 
 DSolveValue[Sin[x]^2 y''[x] + x  y[x] == 0, y[x], x], {x, 0, 5}]

Asymptotic deals with functions of continuous variables. In Version 12.1 there’s also DiscreteAsymptotic. Here we’re asking for the asymptotic behavior of the Prime function:

DiscreteAsymptotic[Prime[n], n -> Infinity]

Or the factorial:

DiscreteAsymptotic[n!, n -> Infinity]

We can ask for more terms if we want:

DiscreteAsymptotic[n!, n -> Infinity, SeriesTermGoal -> 5]

Sometimes even quite simple functions can lead to quite exotic asymptotic approximations:

DiscreteAsymptotic[BellB[n], n -> Infinity]

More Math, As Always

Math is big, and math is important. And for the Wolfram Language (which also means for Mathematica) we’re always pushing the frontiers of what’s computable in math.

One long-term story has to do with special functions. Back in Version 1.0 we already had 70 special functions. We covered univariate hypergeometric functions—adding the general pFq case in Version 3.0. Over the years we’ve gradually added a few other kinds of hypergeometric functions (as well as 250 other new kinds of special functions). Typical hypergeometric functions are solutions to differential equations with three regular singular points. But in Version 12.1 we’ve generalized that. And now we have Heun functions, that solve equations with four regular singular points. That might not sound like a big deal, but actually they’re quite a mathematical jungle—for example with 192 known special cases. And they’re very much in vogue now, because they show up in the mathematics of black holes, quantum mechanics and conformal field theory. And, yes, Heun functions have a lot of arguments:

Series[HeunG[a, q, [Alpha], [Beta], [Gamma], [Delta], z], {z, 0, 
 
  3}]

By the way, when we “support a special function” these days, there’s a lot we do. It’s not just a question of evaluating the function to arbitrary precision anywhere in the complex plane (though that’s often hard enough). We also need to be able to compute asymptotic approximations, simplifications, singularities, etc. And we have to make sure the function can get produced in the results of functions like Integrate, DSolve and Sum.

One of our consistent goals in dealing with superfunctions like DSolve is to make them “handbook complete”. To be sure that the algorithms we have—that are built to handle arbitrary cases—successfully cover as much as possible of the cases that appear anywhere in the literature, or in any handbook. Realistically, over the years, we’ve done very well on this. But in Version 12.1 we’ve made a new, big push, particularly for DSolve.

Here’s an example (oh, and, yes, it happens to need Heun functions):

DSolveValue[(d + c x + b x^2) y[x] + a x y'[x] + (-1 + x^2) y''[x] == 
 
  0, y[x], x]

There’s a famous book from the 1940s that’s usually just called Kamke, and that’s a huge collection of solutions to differential equations, some extremely exotic. Well, we’ll soon be able to do 100% of the (concrete) equations in this book (we’re still testing the last few…).

In Version 12.0 we introduced functions like ComplexPlot and ComplexPlot3D for plotting complex functions of complex variables. In Version 12.1 we now also have complex contour plotting. Here we’re getting two sets of contours—from the Abs and the Arg of a complex function:

ComplexContourPlot[
 
 AbsArg[(z^2 - I)/(z^3 + I)], {z, -3 - 3 I, 3 + 3 I}, Contours -> 30]

Also new in 12.1 is ComplexRegionPlot, which effectively solves equations and inequalities in the complex plane. Like here’s the (very much branch-cut-informed) solution to an equation whose analog would be trivial over the reals:

ComplexRegionPlot[Sqrt[z^(2 + 2 I)] == z^(1 + I), {z, 10}]

In a very different area of mathematics, another new function in Version 12.1 is CategoricalDistribution. We introduced the idea of symbolic representations of statistical distributions back in Version 6—with things like NormalDistribution and PoissonDistribution—and the idea has been extremely successful. But so far all our distributions have been distributions over numbers. In 12.1 we have our first distribution where the possible outcomes don’t need to be numbers.

Here’s a distribution where there are outcomes x, y, z with the specified probabilities:

dist = CategoricalDistribution[{x, y, z}, {.1, .2, .7}]

Given this distribution, one can do things like generate random variates:

RandomVariate[dist, 10]

Here’s a 3D categorical distribution:

dist = CategoricalDistribution[{{"A", "B", "C"}, {"D", "E"}, {"X", 
 
    "Y"}}, {{{2, 4}, {2, 1}}, {{2, 2}, {3, 2}}, {{4, 3}, {1, 3}}}]

Now we can work out the PDF of the distribution, asking in this case what the probability to get A, D, Y is:

PDF[dist, {"A", "D", "Y"}]

By the way, if you want to “see the distribution” you can either click the + on the summary box, or explicitly use Information:

Information[dist, "ProbabilityTable"]

There are lots of uses of CategoricalDistribution, for example in machine learning. Here we’re creating a classifier:

cf = Classify[{1, 2, 3, 4} -> {a, a, b, b}]

If we just give it input 2.3, the classifier will give its best guess for the corresponding output:

cf[2.3]

But in 12.1 we can also ask for the distribution—and the result is a CategoricalDistribution:

cf[2.3, "Distribution"]

Information[%, "ProbabilityTable"]

The Leading Edge of Optimization

In Version 12.0 we introduced industrial-scale convex optimization. We covered most of the usual problem classes (like linear, semidefinite, quadratic and conic). But there was one straggler: geometric optimization. And now we’re adding that for 12.1:

GeometricOptimization[[Pi] r (r + Sqrt[h^2 + r^2]), {1 <=  [Pi]/
 
    3 h r^2 }, {h, r}]

GeometricOptimization[
 
 1/(h w d), {h <= 2 w, d <= 2 w, h*w + h*d <= 50, 2 w*d <= 20}, {h, w,
 
   d}]

You can solve all sorts of practical problems with GeometricOptimization—with thousands of variables if need be. As one example, consider laying out rectangles of certain sizes with a certain partial ordering in x and y. To specify the problem, you give a bunch of inequalities:

With[{c1 = 0.25, c2 = 0.618}, 
 
  ineqs = {{c1 + w[1] + x[1] <= x[2], c1 + w[1] + x[1] <= x[3], 
 
     c1 + w[1] + x[1] <= x[4], c1 + w[1] + x[1] <= x[5], 
 
     c1 + w[1] + x[1] <= x[6], c1 + w[1] + x[1] <= x[7], 
 
     c1 + w[2] + x[2] <= x[3], c1 + w[4] + x[4] <= x[5], 
 
     c1 + w[2] + x[2] <= x[3], c1 + w[2] + x[2] <= x[5], 
 
     c1 + w[2] + x[2] <= x[7], c1 + w[4] + x[4] <= x[3], 
 
     c1 + w[4] + x[4] <= x[5], c1 + w[4] + x[4] <= x[7], 
 
     c1 + w[6] + x[6] <= x[5], c1 + w[8] + x[8] <= x[4], 
 
     c1 + w[9] + x[9] <= x[4], c1 + w[10] + x[10] <= x[4], 
 
     c1 + w[10] + x[10] <= x[6], c1 + w[6] + x[6] <= x[7], 
 
     c1 + w[8] + x[8] <= x[9], c1 + w[8] + x[8] <= x[10], x[1] >= 0, 
 
     x[8] >= 0, w[3] + x[3] <= [ScriptW], w[5] + x[5] <= [ScriptW], 
 
     w[7] + x[7] <= [ScriptW]}, {c1 + h[1] + y[1] <= y[6], 
 
     c1 + h[1] + y[1] <= y[7], c1 + h[1] + y[1] <= y[8], 
 
     c1 + h[1] + y[1] <= y[9], c1 + h[1] + y[1] <= y[10], 
 
     c1 + h[2] + y[2] <= y[4], c1 + h[2] + y[2] <= y[9], 
 
     c1 + h[4] + y[4] <= y[6], c1 + h[3] + y[3] <= y[5], 
 
     c1 + h[5] + y[5] <= y[7], c1 + h[9] + y[9] <= y[6], 
 
     c1 + h[9] + y[9] <= y[10], y[1] >= 0, y[2] >= 0, y[3] >= 0, 
 
     h[6] + y[6] <= [ScriptH], h[7] + y[7] <= [ScriptH], 
 
     h[8] + y[8] <= [ScriptH], 
 
     h[10] + y[10] <= [ScriptH]}, {c2 <= h[1]/w[1] <= (1 + c2), 
 
     c2 <= h[2]/w[2] <= (1 + c2), c2 <= h[3]/w[3] <= (1 + c2), 
 
     c2 <= h[4]/w[4] <= (1 + c2), c2 <= h[5]/w[5] <= (1 + c2), 
 
     c2 <= h[6]/w[6] <= (1 + c2), c2 <= h[7]/w[7] <= (1 + c2), 
 
     c2 <= h[8]/w[8] <= (1 + c2), c2 <= h[9]/w[9] <= (1 + c2), 
 
     c2 <= h[10]/w[10] <= (1 + c2)}, {h[1] w[1] == 1, h[2] w[2] == 2, 
 
     h[3] w[3] == 3, h[4] w[4] == 4, h[5] w[5] == 5, h[6] w[6] == 6, 
 
     h[7] w[7] == 7, h[8] w[8] == 8, h[9] w[9] == 9, 
 
     h[10] w[10] == 10}}];

It then takes only about a second to generate an optimal solution:

In optimization, there are usually two broad types: continuous and discrete. Our convex optimization functions in 12.0 handled the case of continuous variables. But a major new feature—and innovation—in 12.1 is the addition of support for discrete (i.e. integer) variables, and for mixed discrete and continuous variables.

Here’s a very simple example:

QuadraticOptimization[
 
 2 x^2 + 20 y^2 + 6 x y + 5 x, -x + y >= 2, {x [Element] Integers, 
 
  y [Element] Reals}]

If x wasn’t constrained to be an integer, the result would be different:

QuadraticOptimization[
 
 2 x^2 + 20 y^2 + 6 x y + 5 x, -x + y >= 2, {x, y}]

But—as with our other optimization capabilities—this can be scaled up, though the combinatorial optimization that’s involved is fundamentally more computationally difficult (and for example it’s often NP-complete). And actually the only reason we can do large-scale problems of this kind at all is that we’ve implemented a novel iteration-based technique that successfully unlocks mixed convex optimization.

Cracking the Vector-Plotting Problem

I’ve been trying to make good vector plots for about 40 years, but in the past it just never worked. If the vectors got too short, you couldn’t see their direction—and if you made them longer they crashed into each other. But particularly after our success in Version 12.0 in cracking the ComplexPlot problem (which had also been languishing for a long time) we decided for Version 12.1 to try to solve the vector-plotting problem once and for all. And, I’m happy to say, we seem to have been able to do that.

So now, you can just ask VectorPlot (and all sorts of related functions) to make a vector plot, and you’ll automatically get something that’s a good representation of your vector field:

VectorPlot[{2 x^2 - y^2, 3 x y}, {x, -5, 5}, {y, -5, 5}]

VectorPlot[{2 x^2 - y^2, 3 x y}, {x, -5, 5}, {y, -5, 5}, 
 
 VectorPoints -> 30]

What’s the trick? It’s basically about placing vectors on a hexagonal grid so they’re packed better, and are visually more uniform. (You can also make other choices if you want to.) And then it’s about using appropriately scaled color to represent vector magnitudes.

There are all sorts of other challenges too. Like being able to draw vectors in a region:

VectorPlot[{2 x^2 - y^2, 3 x y}, {x, y} [Element] Disk[{0, 0}, 3]]

And putting together our complex-number-plotting capabilities with our new vector plotting, we also in 12.1 have ComplexVectorPlot:

ComplexVectorPlot[z^ Log[z], {z, 6}, PlotLegends -> Automatic]

Cross-Hatching & All That

Before there were gray scales, there were things like cross-hatching. Look at a book from a century ago (or less), and you’ll see all sorts of diagrams elegantly drawn with things like cross-hatching. Well, now we can do that too.

Graphics[Style[RegularPolygon[5], HatchFilling[]]]

Plot[{Sin[x], Cos[x]}, {x, 0, 10}, Filling -> Axis, 
 
 FillingStyle -> HatchFilling[]]

Of course, everything is computable:

Graphics[Table[
 
  Style[Disk[RandomReal[10, 2]], 
 
   HatchFilling[RandomReal[{0, 2 [Pi]}]]], 50]]

We also have an important generalization of cross-hatching: PatternFilling. Here are examples with named patterns:

Graphics[Style[Disk[], PatternFilling["DiamondBox"]]]

Graphics[Style[Disk[], PatternFilling[{"Checkerboard", Red, Black}]]]

You can use any image as a pattern too:

GeoGraphics[
 
 Style[Polygon[Entity["Country", "UnitedStates"]], 
 
  PatternFilling[CloudGet["https://wolfr.am/L9r9AL5O"], 270]]]

Version 12.1 also has what one can think of as 3D generalizations of these kinds of textures:

Graphics3D[Style[Icosahedron[], HatchShading[]]]

It looks pretty good even in black and white:

Graphics3D[Style[Icosahedron[], HatchShading[]], Lighting -> "Accent"]

There’s stipple shading too:

Plot3D[Exp[-(x^2 + y^2)], {x, -2, 2}, {y, -2, 2}, 
 
 PlotStyle -> {White, StippleShading[]}, Mesh -> None, 
 
 Lighting -> "Accent"]

The Beginning of Computational Topology

In the past few versions, we’ve introduced deeper and deeper coverage of computational geometry. In coming versions, we’re going to be covering more and more of computational topology too. Things like EulerCharacteristic and PolyhedronGenus were already in Version 12.0. In Version 12.1 we’re introducing several powerful functions for dealing with the topology of simplicial complexes, of the kind that are for example used in representing meshes.

This makes a connectivity graph for the dimension-0 components of a dodecahedron, i.e. its corners:

MeshConnectivityGraph[Dodecahedron[], 0]

Here’s the corresponding result for the connectivity of lines to lines in the dodecahedron:

MeshConnectivityGraph[Dodecahedron[], 1]

And here’s the connectivity of corners to faces:

MeshConnectivityGraph[Dodecahedron[], {0, 2}]

It’s a very general function. Here are the graphs for different dimensional cells of a Menger sponge:

Table[MeshConnectivityGraph[MengerMesh[2, 3], d], {d, 0, 3}]

Given a mesh, it’s often useful to do what amounts to a topological search. For example, here’s a random Voronoi mesh:

vm = VoronoiMesh[RandomReal[1, {200, 2}]]

Here are the 10 closest mesh cells to position {.5, .5} (the 2 before each index indicates that these are dimension-2 cells):

NearestMeshCells[vm, {.5, .5}, 10]

Now highlight these cells:

HighlightMesh[vm, %]

Tabular Data: Computing & Editing

Dataset has been a big success in the six years since it was first introduced in Version 10.0. Version 12.1 has the beginning of a major project to upgrade and extend the functionality of Dataset.

The first thing is something you might not notice, because now it “just works”. When you see a Dataset in a notebook, you’re just seeing its displayed form. But often there is lots of additional data that you’d get to by scrolling or drilling down. In Version 12.1 Dataset automatically stores that additional data directly in the notebook (at least up to a size specified by $SummaryBoxDataSizeLimit) so when you open the notebook again later, the Dataset is all there, and all ready to compute with.

In Version 12.1 a lot has been done with the formatting of Dataset. Something basic is that you can now say how many rows and columns to display by default:

Dataset[CloudGet["https://wolfr.am/L9o1Pb7V"], MaxItems -> {4, 3}]

In Version 12.1 there are many options that allow detailed programmatic control over the appearance of a display Dataset. Here’s a simple example:

Dataset[CloudGet["https://wolfr.am/L9o1Pb7V"],
 
 MaxItems -> 5,
 
 HeaderBackground -> LightGreen,
 
 Background -> {{{LightBlue, LightOrange}}},
 
 ItemDisplayFunction -> {"sex" -> (If[# === 
 
        "male", [Venus], [Mars]] &)}
 
 ]

A major new feature is “right-click” interactivity (which works on rows, columns and individual items):

Dataset is a powerful construct for displaying and computing with tabular data of any depth. But sometimes you just want to enter or edit simple 2D tabular data—and the user interface requirements for this are rather different from those for Dataset. So in Version 12.1 we’re introducing a new experimental function called TableView, which is a user interface for entering—and viewing—purely two-dimensional tabular data:

TableView[{{5, 6}, {7, 3}}]

Like a typical spreadsheet, TableView has fixed-width columns that you can manually adjust. It can efficiently handle large-scale data (think millions of items). The items can (by default) be either numbers or strings.

When you’ve finished editing a TableView, you can just ask for Normal and you’ll get lists of data out. (You can also feed it directly into a Dataset.) Like in a typical spreadsheet, TableView lets you put data wherever you want; if there’s a “hole”, it’ll show up as Null in lists you generate.

TableView is actually a dynamic control. So, for example, with TableView[Dynamic[x]] you can edit a TableView, and have its payload automatically be the value of some variable x. (And, yes, all of this is done efficiently, with minimal updates being made to the expression representing the value of x.)

GANs, BERT, GPT-2, ONNX, …: The Latest in Machine Learning

Machine learning is all the rage these days. Of course, we were involved with it even a very long time ago. We introduced the first versions of our flagship highly automated machine-learning functions Classify and Predict back in 2014, and we introduced our first explicitly neural-net-based functionImageIdentify—in early 2015.

And in the years since then we’ve built a very strong system for machine learning in general, and for neural nets in particular. Several things about it stand out. First, we’ve emphasized high automation—using machine learning to automate machine learning wherever possible, so that even non-experts can immediately make use of leading-edge capabilities. The second big thing is that we’ve been curating neural nets, just like we curate so many other things. So that means that we have pretrained classifiers and predictors and feature extractors that you can immediately and seamlessly use. And the other big thing is that our whole neural net system is symbolic—in the sense that neural nets are specified as computable, symbolic constructs that can be programmatically manipulated, visualized, etc.

In Version 12.1 we’ve continued our leading-edge development in machine learning. There are 25 new types of neural nets in our Wolfram Neural Net Repository, including ones like BERT and GPT-2. And the way things are set up, it’s immediate to use any of these nets. (Also, in Version 12.1 there’s support for the new ONNX neural net specification standard, which makes it easier to import the very latest neural nets that are being published in almost any format.)

This gets the symbolic representation of GPT-2 from our repository:

gpt2 = NetModel["GPT-2 Transformer Trained on WebText Data", 
 
  "Task" -> "LanguageModeling"]

If you want to see what’s inside, just click—and keep clicking to drill down into more and more details:

Now you can immediately use GPT-2, for example progressively generating a random piece of text one token at a time:

Nest[StringJoin[#, 
 
   gpt2[#, "RandomSample"]] &, "Stephen Wolfram is", 20]

Hmmmm. I wonder what that was trained on….

By the way, people sometimes talk about machine learning and neural nets as being in opposition to traditional programming language code. And in a way, that’s correct. A neural net just learns from real-world examples or experience, whereas a traditional programming language is about giving a precise abstract specification of what in detail a computer should do. We’re in a wonderful position with the Wolfram Language, because what we have is something that already spans these worlds: we have a full-scale computational language that takes advantage of all those precise computation capabilities, yet can meaningfully represent and compute about things in the real world.

So it’s been very satisfying in the past few years to see how modern machine learning can be integrated into the Wolfram Language. We’ve been particularly interested in new superfunctions—like Predict, Classify, AnomalyDetection, LearnDistribution and SynthesizeMissingValues—that do “symbolically specified” operations, but do them using neural nets and modern machine learning.

In Version 12.1 we’re continuing in this direction, and moving towards superfunctions that use more elaborate neural net workflows, like GANs. In particular, Version 12.1 introduces the symbolic NetGANOperator, as well as the new option TrainingUpdateSchedule. And it turns out these are the only things we had to change to allow our general NetTrain function to work with GANs.

A typical GAN setup is quite complicated (and that’s why we’re working on devising superfunctions that conveniently deliver applications of GANs). But here’s an example of a GAN in action in Version 12.1:

The Calculus of Annotations

How do you add metadata annotations to something you’re computing with? For Version 12.1 we’ve begun rolling out a general framework for making annotations—and then computing with and from them.

Let’s talk first about the example of graphs. You can have both annotations that you can immediately “see in the graph” (like vertex colors), and ones that you can’t (like edge weights).

Here’s an example where we’re explicitly constructing a graph with annotations:

Graph[{Annotation[1 -> 2, EdgeStyle -> Red], 
 
  Annotation[2 -> 1, EdgeStyle -> Blue]}]

Here we’re annotating the vertices:

Graph[{Annotation[x, VertexStyle -> Red], 
 
  Annotation[y, VertexStyle -> Blue]}, {x -> y, y -> x, y -> y}, 
 
 VertexSize -> .2]

AnnotationValue lets you query values of annotations:

AnnotationValue[{CloudGet["https://wolfr.am/L9rgvixl"], 
 
  x}, VertexStyle]

Something important about AnnotationValue is that you can assign it. Set g to be the graph:

g = CloudGet["https://wolfr.am/L9rgvixl"];

Now do an assignment to an annotation value:

AnnotationValue[{g, x}, VertexStyle] = Green

Now the graph has changed:

g

You can always delete the annotation if you want:

AnnotationDelete[{g, x}, VertexStyle]

If you don’t want to permanently modify a graph, you can just use Annotate to produce a new graph with annotations added (3 and 5 are names of vertices):

Annotate[{CloudGet["https://wolfr.am/L9rpqPJ0"], {3, 5}}, 
 
 VertexSize -> .3]

Some annotations are important for actual computations on graphs. An example is edge weighting. This puts edge-weight annotations into a graph—though by default they don’t get displayed:

Graph[Catenate[
 
  Table[Annotation[i -> j, EdgeWeight -> GCD[i, j]], {i, 5}, {j, 5}]]]

This displays the edge weights:

Graph[%, EdgeLabels -> "EdgeWeight"]

And this actually does a computation that includes the weights:

WeightedAdjacencyMatrix[
 
  CloudGet["https://wolfr.am/L9rtJdd9"]] // MatrixForm

You can use your own custom annotations too:

Graph[{Annotation[x, "age" -> 10], 
 
  Annotation[y, "age" -> 20]}, {x -> y, y -> x, y -> y}]

This retrieves the value of the annotation:

AnnotationValue[{CloudGet["https://wolfr.am/L9rx8Mxe"], x}, "age"]

Annotations are ultimately stored in an AnnotationRules option:

Options[CloudGet["https://wolfr.am/L9rx8Mxe"], AnnotationRules]

You can always give all annotations as a setting for this option.

A major complexity with annotations is when in a computation they should be preserved—or combined—and when they should be dropped. We always try to keep annotations whenever it makes sense:

TransitiveReductionGraph[CloudGet["https://wolfr.am/L9rBdIZt"]]

Annotations are something quite general, that apply not only to graphs, but to an increasing number of other constructs too. But in Version 12.1 we’ve added something else that’s specific to graphs, and that handles a complicated case there. It has to do with multigraphs, i.e. graphs with multiple edges between the same vertices. Take the graph:

Graph[{1 -> 2, 1 -> 2}]

How do you distinguish these two edges? It’s not a question of annotation; you actually want these edges to be distinct, just like the vertices in the graph are distinct. Well, in Version 12.1, you can give names (or “tags”) to edges, just like you give names to vertices:

EdgeTaggedGraph[{1 -> 2, 1 -> 2} -> {a, b}]

In the edge list for this graph the edges are shown “tagged”:

EdgeList[%]

The tags are part of the edge specification:

InputForm[%]

But back to annotations. Another kind of structure that can be annotated just like graphs is a mesh. This is saying to annotate dimension-0 boundary cells with a style:

Annotate[{MengerMesh[2], {0, "Boundary"}}, MeshCellStyle -> Red]

A completely different kind of structure that can also use annotations is audio. This annotates an Audio object with information about where there’s voice activity in the audio:

AudioAnnotate[ExampleData[{"Audio", "MaleVoice"}], "Voiced"]

This retrieves the value of the annotation:

AnnotationValue[%, "Voiced"] // TimelinePlot

We’ll be rolling out annotations in lots of other things too. One that’s coming is images. But in preparation for that, in Version 12.1 we’ve added some new capabilities to HighlightImage.

Use machine learning to find what’s in the picture:

ImageBoundingBoxes[CloudGet["https://wolfr.am/L9qz1zu4"]]

Now HighlightImage can use the annotation information:

HighlightImage[CloudGet["https://wolfr.am/L9qz1zu4"], %]

Language Innovations & Extensions

Nothing has been a big success:

{a, b, Nothing, c, Nothing}

Before Nothing, you always had to poke at a list from the outside to get elements in it deleted. But Nothing is a symbolic way of specifying deletion that “works from the inside”.

Pretty much as soon as we’d invented Nothing, we realized we also wanted another piece of functionality: a symbolic object that would somehow automatically disgorge its contents into a list. People had been using idioms like Sequence@@… to do this. But Sequence is a slippery construct, and this idiom is fragile and ugly.

The functionality of our auto-inserter was easy to define. But what were we going to call it? For several years this very useful piece of functionality languished for want of a name. It came up several times in our livestreamed design reviews. Every time we would discuss it for a while—and often our viewers would offer good suggestions. But we were never happy with the name.

Finally, though, we decided we had to solve the problem. It was a painful naming process, culminating in a 90-minute livestream whose net effect was a change in one letter in the name. But in the end, we’re pretty happy with the name: Splice. Splice is a splice, like for film, or DNA—and it’s something that gets inserted. So now, as of Version 12.1 we have it:

{a, b, Splice[{x, y, z}], c, d}

Of course, the more common case is something like:

{a, b, x, c, d} /. x -> Splice[{p, q, r}]

There’s a lot of strange (and potentially buggy) Flatten operations that are going to be avoided by Splice.

One of the things we’re always trying to do in developing Wolfram Language is to identify important “lumps of computation” that we can conveniently encapsulate into functions (and where we can give those functions good names!). In Version 12.1 there’s a family of new functions that handle computations around subsets of elements in lists:

SubsetCases[{a, b, a, b, a, c}, {x_, y_, x_}, Overlaps -> True]

I must have written special cases of these functions a zillion times. But now we’ve got general functions that anyone can just use. These functions come up in lots of places. And actually we first implemented general versions of them in connection with semantic-query-type computations.

But on the theory that any sufficiently well-designed function eventually gets a very wide range of uses, I can report that I’ve recently found a most unexpected but spectacular use for SubsetReplace in the context of fundamental physics. But much more on that in a little while…

Talking about physics brings me to something else in 12.1: new functions for handling time. DateInterval now provides a symbolic representation for an interval of time. And there’s an interesting algebra of ordering that needs to be defined for it. Which includes the need for the symbols InfinitePast and InfiniteFuture:

Today < InfiniteFuture

Functional Programming Adverbs & More

We’re always working to make the Wolfram Language easier and more elegant to use, and Version 12.1 contains the latest in an idea we’ve been developing for symbolic functional programming. If you think of a built-in function as a verb, what we’re adding are adverbs: constructs that modify the operation of the verb.

A first example is OperatorApplied. Here’s the basic version of what it does:

OperatorApplied[f][x][y]

Why is this useful? Many functions have “operator forms”. For example, instead of

Select[{1, 2, 3, 4}, PrimeQ]

you can say

Select[PrimeQ][{1, 2, 3, 4}]

and that means you can just “pick up” the modified function and do things with it:

Map[Select[PrimeQ], {{6, 7, 8}, {11, 12, 13, 14}}]

or (using the operator form of Map):

Map[Select[PrimeQ]][{{6, 7, 8}, {11, 12, 13, 14}}]

OK, so what does OperatorApplied do? Basically it lets you create an operator form of any function.

Let’s say you have a function f that—like Select—usually takes two arguments. Well, then

OperatorApplied[f][y]

is a function that takes a single argument, and forms f[x,y] from it:

OperatorApplied[f][y][x]

OperatorApplied allows for some elegant programming, and often lets one avoid having to insert pure functions with # and & etc.

At first, OperatorApplied may seem like a very abstract “higher-order” construct. But it quickly becomes natural, and is particularly convenient when, for example, one has to provide a function for something—like as a setting for an option, the first argument to Outer, and so on.

By default, OperatorApplied[f][y] creates an operator form to be applied to an expression which will become the first argument of f. There’s a generalized form in which one specifies exactly how arguments should be knitted together, as in:

OperatorApplied[f, 4 -> {3, 2, 1, 4}][x][y][z][u][v]

CurryApplied is in a sense a “purer” variant of OperatorApplied, in which one specifies up front the number of arguments to expect, and then (unless specified otherwise) these arguments are always used in the order they appear. So, for example, this makes a function that expects two arguments:

CurryApplied[f, 2][x][y]

CurryApplied[f, 2][x][y][z][u][v]

Needless to say—given that it’s a purer construct—CurryApplied is itself curryable: it has an operator form in which one just gives the number of arguments to expect:

CurryApplied[2][f][x][y][z][u][v]

In Version 12.1, there’s another convenient adverb that we’ve introduced: ReverseApplied. As its name suggests, it specifies that a function should be applied in a reverse way:

ReverseApplied[f][x, y, z]

This is particularly convenient when you’re doing things like specifying sorting functions:

Sort[{5, 6, 1, 7, 3, 7, 3}, ReverseApplied[NumericalOrder]]

All of this symbolic functional programming emphasizes the importance of thinking about symbolic expressions structurally. And one new function to help with this is ExpressionGraph, which turns the tree structure (think TreeForm) of an expression into an actual graph that can be manipulated:

ExpressionGraph[{{a, b}, {c, d, e}}]

ExpressionGraph[{{a, b}, {c, d, e}}, VertexLabels -> Automatic]

While we’re talking about the niceties of programming, one additional feature of Version 12.1 is TimeRemaining, which, as the name suggests, tells you how much time you have left in a computation before a time constraint hits you. So, for example, here TimeConstrained said the computation should be allocated 5 seconds. But after the Pause used about 1 second, there was a little less than 4 seconds remaining:

TimeConstrained[Pause[1]; TimeRemaining[], 5]

If you’re writing sophisticated code, it’s very useful to be able to find out how much “temporal headroom” you have, to see for example whether it’s worth trying a different strategy, etc.

Now We Can Prove That Socrates Is Mortal

In using the Wolfram Language the emphasis is usually on what the result of a computation is, not why it is that. But in Version 11.3 we introduced FindEquationalProof, which generates proofs of assertions given axioms.

AxiomaticTheory provides a collection of standard axiom systems. One of them is an axiom system for group theory:

axioms = AxiomaticTheory[{"GroupAxioms", "Multiplication" -> p, 
 
   "Identity" -> e}]

This axiom system is sufficient to allow proofs of general results about groups. For example, we can show that—even though the axioms only asserted that e is a right identity—it is possible to prove from the axioms that it is also a left identity:

FindEquationalProof[p[e, x] == x, axioms]

This dataset shows the actual steps in our automatically generated proof:

Dataset[%["ProofDataset"], MaxItems -> {6, 1}]

But if you want to prove a result not about groups in general, but about a specific finite group, then you need to add to the axioms the particular defining relations for your group. You can get these from FiniteGroupData—which has been much extended in 12.1. Here are the axioms for the quaternion group, given in a default notation:

FiniteGroupData["Quaternion", "DefiningRelations"]

To use these axioms in FindEquationalProof, we need to merge their notation with the notation we use for the underlying group axioms. In Version 12.1, you can do this directly in AxiomaticTheory:

AxiomaticTheory[{"GroupAxioms", "Quaternion", "Multiplication" -> p, 
 
  "Identity" -> e}]

But to use the most common notation for quaternions, we have to specify a little more:

AxiomaticTheory[{"GroupAxioms", 
 
  "Quaternion", <|"Multiplication" -> p, "Inverse" -> inv, 
 
   "Identity" -> e, "Generators" -> {i, j}|>}]

But now we can prove theorems about the quaternions. This generates a 54-step proof that the 4th power of the generator we have called i is the identity:

FindEquationalProof[p[i, p[i, p[i, i]]] == e, %]

In addition to doing mathematical proofs, we can now use FindEquationalProof in Version 12.1 to do general proofs with arbitrary predicates (or, more specifically, general first-order logic). Here’s a famous example of a syllogism, based on the predicates mortal and man. FindEquationalProof gives a proof of the assertion that Socrates is mortal:

FindEquationalProof[
 
 mortal[socrates], {ForAll[x, Implies[man[x], mortal[x]]], 
 
  man[socrates]}]

I think it’s pretty neat that this is possible, but it must be admitted that the actual proof generated (which is 53 steps long in this case) is a bit hard to read, not least because it involves conversion to equational logic.

Still, FindEquationalProof can successfully automate lots of proofs. Here it’s solving a logic puzzle given by Lewis Carroll, that establishes (here with a 100-step proof) that babies cannot manage crocodiles:

FindEquationalProof[
 
 Not[Exists[x, And[baby[x], manageCrocodile[x]]]], {ForAll[x, 
 
   Implies[baby[x], Not[logical[x]]]], 
 
  ForAll[x, Implies[manageCrocodile[x], Not[despised[x]]]], 
 
  ForAll[x, Implies[Not[logical[x]], despised[x]]]}]

Geo-Everything

The Wolfram Language knows about many things. One of them is geography. And in Version 12.1 we’ve substantially updated and expanded our sources of geographic data (as well as upgrading our server-based algorithms). So, for example, the level of detail available in typical maps has increased substantially:

For many years now we’ve had outstanding geodetic computation in the Wolfram Language. And we also have excellent computational geometry for doing all sorts of computations on regions in Euclidean space. But of course the Earth is not flat, and one of the achievements of Version 12.1 is to bring our region-computation capabilities to the geo domain, handling non-flat regions.

It’s an interesting exercise in geometry. We have things like the polygon of the United States defined in geo coordinates—as a lat-long region on the Earth. But to use our computational geometry capabilities we need to make it something purely Euclidean. But we can do that by using our geodesy capabilities to embed it in full 3D space.

So now we can just compute the centroid of the region that is the US:

RegionCentroid[Polygon[Entity["Country", "UnitedStates"]]]

That third element in the geo position is a depth (in meters), and reflects the curvature of the US polygon. And, actually, we can see this directly too:

DiscretizeRegion[Entity["Country", "UnitedStates"]["Polygon"]]

This is a 3D object, so we can rotate it to see the curvature more clearly:

We can also work the other way around: taking geo regions and projecting them onto a flat map, then computing with them. One knows that Greenland looks very different sizes with different map projections. Here’s its “map area” in the Mercator projection (in units of degrees-squared):

Area[GeoGridPosition[Entity["Country", "Greenland"]["Polygon"], 
 
  "Mercator"]]

But here it is (also in degrees-squared) in an area-preserving projection:

Area[GeoGridPosition[Entity["Country", "Greenland"]["Polygon"], 
 
  "CylindricalEqualArea"]]

And as part of the effort to make “geo everything”, Version 12.1 also includes GeoDensityPlot and GeoContourPlot.

Advance of the Knowledgebase

Every second of every day there is new data flowing into the Wolfram Knowledgebase that powers Wolfram|Alpha and Wolfram Language. Needless to say, it takes a lot of effort to keep everything as correct and up to date as possible. But beyond this, we continue to push to cover more and more domains, with the goal of making as many things in the world as possible computable.

I mentioned earlier in this piece how we’re extending our computational knowledge by curating one particular new domain: different types of data structures. But we’ve been covering a lot of different new areas as well. I was trying to think of something as different from data structures as possible to use as an example. I think we have one in Version 12.1: goat breeds. As people who’ve watched our livestreamed design reviews have commented, I tend to use (with a thought of the Babylonian astrologers who in a sense originated what is now our scientific enterprise) “entrails of the goat” as a metaphor for details that I don’t think should be exposed to users. But this is not why we have goats in Version 12.1.

For nearly a decade we’ve had some coverage of a few million species. We’ve gradually been deepening this coverage, essentially mining the natural history literature, where the most recent “result” on the number of teeth that a particular species of snail has might be from sometime in the 1800s. But we’ve also had a project to cover at much greater depth those species—and subspecies—of particular relevance to our primary species of users (i.e. us humans). And so it is that in Version 12.1 we’ve added coverage of (among many other things) breeds of goats:

Entity["GoatBreed", "OberhasliGoat"]["Image"]

EntityList[
 
 EntityClass["GoatBreed", "Origin" -> Entity["Country", "Spain"]]]

It may seem a long way from the origins of the Wolfram Language and Mathematica in the domain of mathematical and technical computing, but one of our great realizations over the past thirty years is just how much in the world can be put in computable form. One example of an area that we’ve been covering at great depth—and with excellent results—is food. We’ve already got coverage of hundreds of thousands of foods—packaged, regional, and as-you’d-see-it-on-menu. In Version 12.1 we’ve added for example computable data about cooking times (and temperatures, etc.):

Entity["FoodType", "Potato"][
 
 EntityProperty["FoodType", "ApproximateCookingTimes"]]

ExternalIdentifier, Wikidata & More

Books have ISBNs. Chemicals have CAS numbers. Academic papers have DOIs. Movies have ISANs. The world is full of standardized identifiers. And in Version 12.1 we’ve introduced the new symbolic construct ExternalIdentifier as a way to refer to external things that have identifiers—and to link them up, both among themselves, and to the entities and entity types that we have built into the Wolfram Language.

So, for example, here’s how my magnum opus shows up in ISBN space:

ExternalIdentifier["ISBN10", "1-57955-008-8"]

Right now we support 46 types of external identifiers, and our coverage will grow broader and deeper in the coming years. One particularly nice example that we’re already covering in some depth is Wikidata identifiers. This leverages both the structure of our built-in knowledgebase, and the work that we’ve done in areas like SPARQL support.

Let’s find our symbolic representation for me:

!(*NamespaceBox["LinguisticAssistant", 
 
    DynamicModuleBox[{Typeset`query$$ = "stephen wolfram", 
 
      Typeset`boxes$$ = 
 
       TemplateBox[{""Stephen Wolfram"", 
 
         RowBox[{"Entity", "[", 
 
           RowBox[{""Person"", ",", ""StephenWolfram::j276d""}], 
 
           "]"}], ""Entity["Person", "StephenWolfram::j276d
 
"]"", ""person""}, "Entity"], Typeset`allassumptions$$ = {}, 
 
      Typeset`assumptions$$ = {}, Typeset`open$$ = {1}, 
 
      Typeset`querystate$$ = {"Online" -> True, "Allowed" -> True, 
 
        "mparse.jsp" -> 0.488214`6.140155222562331, 
 
        "Messages" -> {}}}, 
 
     DynamicBox[
 
      ToBoxes[AlphaIntegration`LinguisticAssistantBoxes["", 4, 
 
        Automatic, Dynamic[Typeset`query$$], Dynamic[Typeset`boxes$$],
 
         Dynamic[Typeset`allassumptions$$], 
 
        Dynamic[Typeset`assumptions$$], Dynamic[Typeset`open$$], 
 
        Dynamic[Typeset`querystate$$]], StandardForm], 
 
      ImageSizeCache -> {117., {7., 16.}}, 
 
      TrackedSymbols :> {Typeset`query$$, Typeset`boxes$$, 
 
        Typeset`allassumptions$$, Typeset`assumptions$$, 
 
        Typeset`open$$, Typeset`querystate$$}], 
 
     DynamicModuleValues :> {}, 
 
     UndoTrackedVariables :> {Typeset`open$$}], 
 
    BaseStyle -> {"Deploy"}, DeleteWithContents -> True, 
 
    Editable -> False, SelectWithContents -> True])

Now we can use the WikidataData function to get my WikidataID:

WikidataData[Entity["Person", "StephenWolfram::j276d"], "WikidataID"]

InputForm[%]

Let’s ask what Wikidata classes I’m a member of:

WikidataData[Entity["Person", "StephenWolfram::j276d"], "Classes"]

Not that deep, but correct so far as I know.

There’s lots of data that’s been put into Wikidata over the past few years. Some of it is good; some of it is not. But with WikidataData in Version 12.1 you can systematically study what’s there.

As one example, let’s look at something that we’re unlikely to curate in the foreseeable future: famous hoaxes. First, let’s use WikidataSearch to search for hoaxes:

WikidataSearch["hoax"]

Hover over each of these to see more detail about what it is:

WikidataSearch["hoax"]

OK, the first one seems to be the category of hoaxes. So now we can take this and for example make a dataset of information about what’s in this entity class:

WikidataData[
 
 EntityClass[
 
  ExternalIdentifier["WikidataID", 
 
   "Q190084",  "hoax", 
 
    "Description" -> 
 
     "deliberately fabricated falsehood made to masquerade as the truth"|>], All], "WikidataID"]

We could use the Wikidata ExternalIdentifier that represents geo location, then ask for the locations of these hoaxes. Not too many have locations given, and I’m pretty suspicious about that one at Null Island (maybe it’s a hoax?):

GeoListPlot[
 
 Flatten[WikidataData[
 
   EntityClass[
 
    ExternalIdentifier["WikidataID", 
 
     "Q190084", <|"Label" -> "hoax", 
 
      "Description" -> 
 
       "deliberately fabricated falsehood made to masquerade as the 
 
truth"|>], All], 
 
   ExternalIdentifier["WikidataID", 
 
    "P625", <|"Label" -> "coordinate location", 
 
     "Description" -> 
 
      "geocoordinates of the subject. For Earth, please note that 
 
only WGS84 coordinating system is supported at the moment"|>]]]]

As another example, which gets a little more elaborate in terms of semantic querying, let’s ask for the opposites of things studied by philosophy, giving the result as an association:

WikidataData[
 
 EntityClass[All, 
 
  ExternalIdentifier["WikidataID", 
 
    "P2579", <|"Label" -> "studied by", 
 
     "Description" -> 
 
      "subject is studied by this science or domain"|>] -> 
 
   ExternalIdentifier["WikidataID", 
 
    "Q5891", <|"Label" -> "philosophy", 
 
     "Description" -> 
 
      "intellectual and/or logical study of general and fundamental 
 
problems"|>]], 
 
 ExternalIdentifier["WikidataID", 
 
  "P461", <|"Label" -> "opposite of", 
 
   "Description" -> 
 
    "item that is the opposite of this item"|>], "Association"]

What Is That Molecule? Advances in Chemical Computation

You have an image of a molecular structure diagram, say from a paper. But how can you get the molecule it represents in a computable form? Well, with Version 12.1 all you need do is use MoleculeRecognize:

MoleculeRecognize[CloudGet["https://wolfr.am/L9rL9B2K"]]

It’s the analog of TextRecognize, but for molecules. And what it produces is a Wolfram Language symbolic representation of the molecule. So, for example, you can then generate a 3D structure:

mol = MoleculeRecognize[CloudGet["https://wolfr.am/L9rL9B2K"]];

MoleculePlot3D[mol]

Or you can compute the distribution of torsion angles of the structure:

Histogram[MoleculeValue[mol, "TorsionAngle"], 360]

You can also connect to the world of external identifiers:

MoleculeValue[mol, "PubChemCompoundID"]

But what’s really useful about MoleculeRecognize is that it can be used programmatically. Take all the images of chemicals from a paper, “molecule OCR” them—then do things like check whether the molecules are equivalent, or make a word cloud of their 3D structures:

WordCloud[
 
 MoleculePlot3D /@ DeleteDuplicates[MoleculeRecognize[{!(*
 
GraphicsBox[
 
TagBox[RasterBox[CompressedData["
 
1:eJzt3Qm4VVX5BvBSTGwSM8vUTEzTUjOHDNEyVDSaQ8kUS0HAqBwCC9RSaZJM
 
Tc1GrTSFQrFBDQQtpcxyaLCyOacsxyybbF5/f+v/LJ7t6XI498K5Z59zv/d5
 
Tsa955y799rrXd/7DetbIycfNX7aGo95zGNmDn/kf8ZPmjVmxoxJx+434pF/
 
TDhy5vTDj5w6ZdyRx0w9fOqMUZPXfOSH8x953fvIa9gjrxQIBAKBQCAQCAQC
 
gUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAg
 
EAi0gH//+9/pb3/7W/rNb36Tbrnllvy69dZb00MPPZT+85//dPryAoEhCxy8
 
6aab0oIFC9LZZ5+dZs2alSZPnpxfRx99dDrzzDPTV77ylfTTn/40Pfzww52+
 
3EBgSOHOO+9M5513XjrggAPSNttskzbccMO07rrrpic+8Yn59eQnPzltvPHG
 
aeedd07Tp09PixYtSg8++GCnLzsQGBK4//7701lnnZVe8IIXZD4OGzYsbbLJ
 
JmnXXXdN48aNS/vuu2964QtfmJ7+9Kenxz3ucWm99dZLY8eOTQsXLkx//vOf
 
O335gUBPg9950UUXZT6utdZa2Xbutttuac6cOenLX/5y+s53vpO+9a1vZT4e
 
f/zxaaeddkrDhw9P66yzTnrVq16VvvnNb4aPGgi0ET/4wQ/SG97whsw7NvS1
 
r31t5uY999yT+fvPf/4z/eMf/0h//etf0913350uuOCC9JKXvCStvfbamc94
 
e++993b6NgKBnoT47TnnnJM233zzpO3wqFGjluvX//73v//zfj/74x//mD75
 
yU+mrbfeOj32sY9No0ePTkuXLu3A1QcCvY8//OEPaebMmdmGsov+/+9+97um
 
n8HTX//61+nQQw/Nvilbesopp2Q7GwgEVi9+9rOfpQkTJmR7KGZ77rnnZtu6
 
MtC/c+fOTeuvv37+7BFHHJF++9vfDsIVBwJDC1dffXXaY489luvcJUuWtPzZ
 
888/P2255Zb5s/I1P/7xj9t4pYHA0MTixYszN/Hsla98Zbrhhhta/qxaBjFe
 
nx0zZkxatmxZG680EBia+PrXv77cju65557pG9/4RsufvfDCC3PcqPD7xhtv
 
bOOVBgJDE3KfL3vZyzLP1BZ98YtfbOlzfNYPfvCD6SlPeUr+7GGHHZZuu+22
 
9l5sIDAEIT570EEH5bjPBhtskE4//fT0l7/8ZaWfU2s/bdq0HAsW2z3uuOOi
 
LjAQaAPkQU866aQ0YsSIXP83fvz4rFmb1Q2pZ1CXtOOOO2Zub7HFFmnevHlR
 
axQItAFynVdddVWO+ay55pppo402SrNnz877WuRXGuFn3/72t3Mct9T1vulN
 
b8rvDwQC7QGNeuqpp6bNNtss85RdPOqoo9Jll12WfvKTn6Tbb789v26++eZ0
 
8cUXp4MPPjjrYjaUDzt//vz097//vdO3EQj0LGhUXMRL+9HYRhx88YtfnKZM
 
mZJmzJiRX2984xvTDjvskOuKcHnkyJHpfe97X/ZNA4FAe0HD2tt97LHH5j0v
 
9qA9/vGPX75v1OsJT3hC/pl6pL333jt96EMfynVKrdQlBQKBVYdYEE176aWX
 
pne/+91p4sSJaa+99sr7RtU5yNGo0WU7+bD2uvzrX//q9GUHAkMKdK/9aPal
 
/fznP881DmK48qb2kP7qV79KDzzwQPY/+9oXEwgEBgf4R8Piov0seMvO4nBw
 
MxDoDHCP/bR/BR+rwFWxIT1VgqOBQGdg7/ZnPvOZXOMnFlTFD3/4w+yH+v19
 
993XoSsMBIY27C3TM0XfsUsuueRRv/vc5z6Xtt122/SKV7wi+6WBQGDwIVa7
 
++67p2c84xnZXlZxxhln5HyM/KjahkAgMPgQv2UrcfHTn/70o36n1l5dw/bb
 
b5/3jQYCgcHH5z//+fS85z0vOBoI1BTB0UCg3lAv//znPz84GgjUFGqK9LYO
 
jgYC9cT3vve9fDZEcDQQqCdwVO+w4GggUE+oTbDnrC+OfuQjH8l50+BoINA5
 
XHfddWmfffbpk6Mf/ehHcx+V4Ggg0Dk0s6Mf/vCH09Oe9rTg6BCCvcH2O8Ue
 
4frAOaL6YIc/OnRhH+Itt9ySrrjiivTZz34214A62/1rX/ta7vP68MMP9/k5
 
e6XkBbyc6RV7o9qD73//+yuM6zrjW6+j4Ghvwt5De5s+9alP5X7m6radd2ld
 
1oOOvtLvCm/Nk8YezJdffnk+t9b77McI29se6Pv3mte8JvzRIQZ7+Z1X8OY3
 
vznzUQ8rfc2dQfDMZz4zP3f9l9dbb7201VZb5V6tzhyp9rFy3p7zubzPet5X
 
39fAqqMZR88888z8c3VIzvgO9Ab01XCOO36K2+MmHr7+9a/P/ef0dH3/+9+f
 
+1htt912mb94ePjhh+eeykXTOjNa71day9yJfujtQeGo2BDNU/UpSu7lWc96
 
Vrrgggs6eJWB1Qn7+t/73vdmW7nWWmulXXfdNWsmPunvf//7/HvnSOvtSufK
 
n+vduskmm2Rf1e+BHaWNn/rUp2a+Rq/I9qBwVJ/O00477VF9re3xtr56NmII
 
gd6AMwf23XfftMYaa6TnPOc5mV+42cgx/3buyIIFC/J5lvor64WOu4C/tK7+
 
rrgbWrc9+O53v5v7LAwfPjy95z3veVRc4Atf+ELeW+rV6tlqgXpDzypalj7y
 
zKdPn55jt81isnfccUf+jPiQ3jneD/Tts5/97LTOOuvk9T042h44H3jcuHFZ
 
y8i1VPuOnXPOOVnnRsyodyBfMnny5GwTxRo+8YlP/E+vuUawp3fffXeO7erj
 
WrQW34g/6nwR/mucLdIelNyLeLvnZS0sOWz6VsxvqHDUXPzTn/6UtUSv+lY/
 
+tGP0qtf/ep8fqweOPInrUA8yJyojkuJGfku9jU42h4Uf/RJT3pSOuaYY7Km
 
FSvS28i/h4IdNe/uuuuu9NWvfjVrCb7V0qVLs+3oNa6WvYh45QwCvulAUWJG
 
bPIHPvCB4GibUDgqfsDv3GWXXXK8j58hTyYu35+zvrsNDz30UFq2bFk+R8Pc
 
de9eaq9OPPHEdM011+T39ArUEonj4qg4BF9noNALS17OHNH7dWWaOdB/0C7O
 
eXnRi16Un5k4vDyYWN+mm26ax97P+S3msHNhesWuiFdan+g12k+Ob/3118+a
 
wVk3eOq+5R34AHwCOrjb4Z75Np7r2LFjW+7JarxoDf3Si70sHGVHTz755LCj
 
qxHqM53rYozlrdWS4KN8tbz2xz72sXw+2v7775/9jbXXXjvb2JkzZ2bN61l1
 
K1f523IH4mFqZ7beeut8/+5djv7888/PuYZ3vOMdee3CU+856KCD0sc//vGc
 
Q1xR/Wo3wJlaYkb98Uf5onq8qm/ARTyHonXFG/lHUQu46sArz0ht5Vve8pa0
 
44475tovZ4rut99+2QcVt2Mv5Knt/xZzf/nLX579UnUOdNIJJ5yQ9aGcWrfU
 
lsgtuCf+2BFHHJF5RzOIiekBbr7p0y9eZA2Tb1i4cGHOTbAVxom+ML/9XHy0
 
G9cpPLLW8m3ECe1taqzDbYQ12Zh5v7P0Cq9LzIjmUuMSNfUDBx7h5pVXXplz
 
oM4BNufUJtA9eHj99ddnv6s679gc56Xho7oU2khezVmkNKDYivyqOV1nqJlR
 
m+p6S88JtTEvfelLs11wD433bszc1y9+8Ys8FydMmJDno1oP8/S4447L42md
 
qjM8Pz61dUUdH47iJW2Pp2IRxmZF6w39Om/evOwD8IXoLnWEUDhqLtEY3bhm
 
1QFsov1nOGZ/Ao6xH3yu448/PvPPc1xR/tna6Dnh+JIlS/LZ3mpO+G5skHO+
 
6Ub6sW45bLwr3Bw/fnzWC+5/9OjR+T7YA3uqml23eYeH1jB8Vp9TalTtjfcz
 
HHBuVZ3m6IMPPpiuvfbadMopp+T4rectl+ZZuhfc5N/QRm9729uyfm28frpj
 
8eLFuXbBOdF0Ld+8+OWFo7gecd3+Aa/4+DfeeGM6++yz8/MQAzHOYrUHHnhg
 
7qtLz7V6pqj38MPUmNA11lP61xqqXtBz9jxpwE77Ja6TzTCfcNM8klsSq546
 
dWr60pe+lONf8sBVre7cKfdgbOzZKn6ne8djv8dH+fqy3nnhAK5aDzqtKfBM
 
rIF/SCPRoXSD67UmeTa0rbHx3MR76CLjwg/Ha/Ex67q9LNYka7p6v2nTpvVZ
 
Ux/50f7BM+BXqQGhz6x99JlnJX5pXb3pppvycxqIL1lqOMUD586dmzngu9kV
 
53+LKyxatCjblcH2Vc2d2267LV144YV5PskZmVuuj7/NnrIXjdwskCv0Pr6q
 
/ZT0obMdi30pmsK9yWEcffTR+W/YF2Lts26Z+7SgvzGYcD80gbyuPZ/4Z116
 
7nOfm2MP9i2JyZb7+OUvf5l5xddWy4eH9Cxei4/Jy9BJ6gVx3LiIG1U1R3C0
 
/6BH5eHZNPOM3WQ/aRXctM7zzVaHJpULowH1QxJD4tvxb8UV5BbZGjwejHxF
 
OUNVPMgaUWI87Lxr4YNbl2jfZjZezBbvcNrnxcf4nY050qIpxNf4YcbXZ3BV
 
jbl4sf0IbPVgrFN0rb2dc+bMyeuk9dLa/LrXvS7vZ7FmN65LxoGOEsd2vc7N
 
479Y07xwlm+wxx57pFmzZmWfqPFZOqfLvYt/+55O6yfgc8lXuDbj3wzWXu8X
 
Q5X/L3XIfcH43XnnnTmOygbRWmyBz5rnxrLZusxv4GPII48ZMybHQ4yzNV4O
 
wXfgUztyzL7T9RkT/i1Nhav0kznCnpsj7cpvGxe61BpEl/nb5po1w5xlV8Ql
 
W1mX2AHxI5/Tk8B6w4awLbiojq76HDxj/GB/rQP+Jv+O/WKT8LvEv9sBupou
 
pUldozG3tqhDcQ/mRF/7WQpwlp4yT8038V58nThxYo5niyXS/rSJNanRJ6Ix
 
6AnzlF3udFzXM7bn2RqNByurjbPuukfrkzHDu0YYO/dmDVJ3x0/cbbfdsg20
 
HnvO9Kmx8x7vra5Vxris5cXvYjvlCIy1fQniku2u/3Ad5m7RWu985ztzjMJ8
 
pbXkXK1tnunqeo7GztrAh5IPocusS3J+Rx55ZH4+fGNzqz+2zHPGadrwrW99
 
a75++T/PxJ5ne4Gsp+U5uB/j6zPWV7Eoz9s6gTM0o/UDX1aXpvC3zQV7w+wV
 
87xdo7lprM01NsS9tDLexhJXPT/fa864R5qr2fj5nN/XpUeZa5k9e/byfhLq
 
Opvpb/fLJxo2bNjyvZnV+3B/Yjr4J39OW1h/6SVzmy3EN/82/t7jvWq3ik2g
 
bT1/ZyqZn7QdTltXnf3bmE9oN4oGtO6ay3w688d47bzzzlmHsre33nrrgPV2
 
8bus3+yUtUANAm3HZxK79P1szEB1ZjXvImZt7eTfFRtFm7AvVZ/bf0tMzRk6
 
+E0DiinxVa2h5gx/gz8/0OvyzN07n1NdiblhbVZvgrOueaB7Ajw/f8NnuyXv
 
XYX7tkaKM/e117IR1vBJkyZlf1qdDu1R3m8sPEvfx1/EYxyVt7QOnnTSSblW
 
1HMWM6S35Kb4GXLJtInvYJesG+wtncUvpLvom06ua2WOWyesF3IU1p1SA8G/
 
ETfs71y1XtOifF1+prGjR/lM4lfWPLp/dc2vEh8TA6Kh7OHzDKwJ/r5aLPax
 
eh8+U/iNqyV2xa7S4bhK/xub/sSVSl2xecefcB38RfUlYsrWbna6TvmfwUaV
 
o/gkD9zMFlQ5il98tdJjwliqt7M2+z7xBrFvNoZ+4+N4+Y6rr7462095A3Fy
 
9sJ88V3suFiB9bP4DXRXp/2CAuuE6xQPpH/x0/zGLTFndU3yBCvT4u6TL+g+
 
5WPZDc/A9xkb4yZm1Kq2G8h9eB56WYopqc+ic1xHieX25aviKl+ZLyJWSufQ
 
O3Sz5y1OYW9NszVF7prtlUOjm3GTPVdHYd33/NnWuuWmOwHjSFvhiTVxZfWJ
 
VY4Wu1ueofVezpL99F1sY185gRLrN4/ZHnPb37d2ymOV31vH6ay6rqGukb8m
 
l0En8JvMcf+lFfiO9GvjXDW+xlHdf7FHPsf3NOf5orSEcWv3ulTGmr82f/78
 
nM+gX0p+uNQIWiuq1+Ie+HWeuZgeXwRXrVV0E57hPt1chXWLXqJD2F73TNeW
 
Hn18Tj5jndbkOuBd73pX5oi1UF1FM61S5aj3s7vV3C/b6Xdi5XIGzfjudzQe
 
f4tNLnWWnc6X9wclhmi9KbEOcTFrlLlqX43aOnPVOKkXwE1ano7HTVqZbhaL
 
Mx70yGD7TUX/lphN2XfgmYj38VPoBratXFupgSg2US6RBsBv6265J3F99tp3
 
l1phNldMgn7iF7PJtHcn7r0bUDiqN4S1jH9Ay/T1Mr/kAvDQGNOn4PnSzGwo
 
+2oOmo8rgzXcumCu0sfskXW021B6HRgjcTTzU/yz1MLwK8WA+Vilrtj8F38x
 
buIlddB25T74/65VLbN7KLUceIiP1ZhFiQHTt3TulClTsi22ThUOsqu4Wfbc
 
WMvFJPi+8iwry/EOdRSO4h0bQIPwj/p64afn1chRPiMb4udifmxqq2MuVkrv
 
+SytzJZ0K9wzm8nmWKdKfFZchQYWCzVu/HDxYfEX8dq+8nSdBM5ZM8QD3v72
 
t+f7KPEhvmqJtVZ9btdPg4kb8ckPOeSQ5XvkvMT3vdhadpktsI4HN1eOKkfZ
 
QbmRUpfR+GIjy3urHC19+Pxc7rQ/PUjEj8Qwfdbzk4vsZhQfT5zM3gp7xNhU
 
Y8uG8N3U79F2dH1d/e2Sc7KGuA8+jrwqzcNO8l0b6woB59hF9pH9lKfybK3t
 
NLQ1mR/fak31UIc5UvbdGUd+Pz+JPqPXzCf1GWIH7Cudxtdo5KhYPe3i5/QM
 
7dYqcNTf9Fl7T1rtF1V38KvoRmOhPsT9yXP4tzxSp3Vtqyj6V/xPrJcd5auy
 
jZ51qWWmdaucc39yUfRy6Y/g3sPn7B+sd/LGOMo+4qOYP62GO7in5q3U9Ik5
 
mmeNHFUTisN+bt30vlbBh2F7fdba4Ln2EuQv1H+6PzXH4m5lLpc4Ersy2PXq
 
/UXJOclZso9iSSXmRQfZJyhnIj5UoJ5YvN69izXQFoH+QUyOLy9eRIvxofhT
 
dIiXtdA6ai55RvxOcaVGjppjasr83HPz81b2C1T35vqsNcKa0Euorl98u2os
 
TW6GbTLuq9LLbjBR6grthZM7klel4fna4glsatEIVY6ytyWXHmgd6mLl5Iwh
 
nsrJy3utCNXcS5Wj/Bb1DPYDyaPQxmIKrfx93FaLyNf1HK0bvYRmHLW/Rg8F
 
65q9HN2Cas2VvCp9oHZTzFEepcR9qxw1P3qhv9lgQ17vgAMOyGPopWZzIBxl
 
Z0s/Nb+Tk2Yfmn0Xne15ikNYH9Tu+o5ei/M142jpC8vXkIfoNpS91bSPGjP5
 
GnqgaCg+bOlNHRwdGMTk2DEcWRWOAl/DPhcxenaRj2KPCl+2GvcrPfz1PRAr
 
UverPt++DjHEXkMzjqrFEYczBmK93Yqyn00srBqv5YvTv8HRgaOck7E6OOo5
 
iffIwRTtKk6Lt/YG81+87EfzvORZijZWyy3m14v9hlvhqJoGOeVuRl95lGpO
 
Ljg6MLBb4jSlRl7tWrNxZP/UkeC0PKpar6qNLGfGif2yp76znJlsH5eXuG+x
 
tX6nfsXeq17zQwta4ahx4Bv0GsIfXXXghZi5ehC1JPatN8vb4aAaapyTL2ns
 
JWEtZYflbtTqy7GWvZb0HF7ip5/RuXKz+qCYt72aM2uFo/REVZP0CvTyUo8d
 
HB04yvnk9v7xD1d2ZqP3qx+hy9SDiTk1vr/U2bC5cqzsg+cjxyNHpq7Jz2hb
 
uZwV9crqFbTCUXkvdb69Br5RydUFRwcOdrOcfddKTJXP6P1sarP3F656L3uN
 
s/KB/r+f9bffR7eiFY7SFtbJXoO9LiVvEBytP3B2KNZntsJR9ZV0Sa+BRiu5
 
F/t7GveTBgJ1QCscFQPvVX9UHb17l1ujpQKBuqEVjtqzpW9Ir0HPhXLvelPw
 
TwOBuqEVjtpHIqbea6jmR8OOBuqKVjhq77Q6j16DvVLqkaOmPlBnDOX8qD0T
 
Ja6rB11o3UAd0QpHu7WmfmVQD67HjnvHVftkAoG6oRWOqq3Um7/XwI7qFRMc
 
DdQZrXDUvp9u2j/aKqo9KPQ/YlcDgbqhFY7qYdCLMaNqXDdiRoG6ohWO6sPg
 
nKRew+rY9yLO5FXX/omB7kcrHNUX1TkevYZV5aheHdYuZ7M1O+s2EFgVtNqH
 
Qe+1XsOqclR9rx4Bzgq2hyoQaAeG8t40cVznng+Uo/ZN6acudxwx4UC70ApH
 
9Z3pxXrdan50IBy1T4reda5F3fsPB7oXQ7lXCm7pl7UqMaOyp3Eo7msMDA7s
 
/Sj9QlbEUedY9eL+UXGeUsOgd3O1h30gUBfoReCMlGYcdY6a83F7DdWaej0n
 
9fYMBOqGVjjqzBS9iHsNzmMtfRj0oONbBgJ1QytaV8yoW/Oj+mBde+21WQeI
 
vVZrDXC09MAOrRuoK5rFjJyJ7dxlZ0p24x5v+UvnibKV2267bd4XUNWz1VpA
 
5/Pdc889HbzaQKBvNOOo3IS+48400p+rW8BWspE4OXr06Fwnte666+a+rGK5
 
BXq7TpgwYfm5jvpCBgJ1QzOO6oMqrqIep5w1VmeU8y0vueSSdNhhh6WRI0fm
 
vJF+6HonO2NKT9YC7y3n8kWvlEBdUeWoed147hSeetU9/8c+qvmxzji/Gzf1
 
YTrkkENy/3Q2U51BuQ98doZaOd+dPxpx3UAdYc/G1KlT89k3ztNV8+cswGZn
 
dtQJzhll6+fOnbu8X7c4tLNAnGXo3AK1CdVYET916dKlmc+bb755PiP+xBNP
 
zH3TA4G6ARfVJzibVfzWeav6WF522WU5hlLXXv0455znc889Nx144IHLda3z
 
7uQ6ndNDu1bXGrZTrkl9rViY8731atpmm21WepZQINBJ0LfO0LV/Qw9Ac5cd
 
mjNnTj4Psk55Q2uGWNall16a+4Q5n1v/34033jjXDC1cuDCfKVs9C8R/77rr
 
ruyn6rdgHXKu3hZbbJH9UecD8U3rrucDQxfsC/13zTXXZM3n/GR60byXP3Se
 
uZ7unT5/la6VDxJrpms32GCDHK8Vuz3hhBPSddddl/Vq1fbTucuWLcs1CqNG
 
jcpn5FmH+KH2fdLCztLrtfPZA72HckYVGyX24hw5NmrEiBH5v9OmTctnKNOP
 
g91zwLXxke2n1htM7xa9IXCOXbz44ouz7ayuIf6/eFjRBxtuuGHmZ9EH6jPE
 
mejbsJ+BbgIbJP5pftvrwo6qqWevdt9995xjlMMYDP2LP7fffnu6/PLLl2tU
 
/c/UD1szaFf+ZdV24pvPzJ8/P+9pcXatdUZs6NBDD83fZZ2xHgU3A90M2k9t
 
HP1r3xZ+0r98Veegn3XWWbmuoR37JnFH/68rr7wy50SKrt10001zDTyNqqcf
 
7Vu16XgnnzJr1qy0ww475HWFrlWnIE4k/lvNvwQC3Y6q/hWjUS8nP0Nnbrnl
 
lvl8XXWw8jera977e2r05ICsBTQqru2yyy7ZVxbD4jtX/Uc8FRO66KKLMh/Z
 
fbrWter3d/3112efM+K2gV5F0b90JQ1Jd2633XY511G4c8MNN6ySTcUzdQbn
 
nXdemjhxYq4/kAviC6utsBbccccd/1NPISbE3rKdahfoWlrYZ+bNm5evudOx
 
rkBgsIBHagJxyT6YffbZJ2tfelIsh/4Vd+1vLQAbt2TJkpyXVfvObuKZ73R+
 
ON+4MV5rPWAf9UJjb2lh17LnnnvmOt2+ahcCgaEC8159wxVXXJH9Rb5fqb2j
 
Ndkv9emt1D+Ix4pN7b333lmf4udee+2VuadOmF/aqGvFhNRd2FPnb6otEhti
 
3xctWpT/dujawFAH/qkToD/Vw4qhbrXVVpljciJymPIbfMdmXBWTYgf5uKX2
 
ffHixbl2tsoz+vaBBx7I68LMmTPT9ttvn2O84rXqjORY7A+t1i4EAoH/5yr9
 
q8aB7Rs7dmyufdhoo41ynQDdSZOuSP/Ke6q1ZY/V4/k3nlV9TraUhnZ2GxtL
 
14oL4fapp56afWEx6KhDCARWjKJ/1arPnj07x29oUHaOX+lMJ/mSxviNf9Om
 
YsO4XvUfcU5NLhu5//775++iqdUWz5gxI1111VVRhxAI9ANF/6p9XbBgQa6n
 
pV/xSq5G3YEaJnmSqs3zuSrH/H/7WEu9k5p3Gtp32GvGF2Vvow4hEBgYSvzX
 
+Z5yKfanqt+T61QLrCaCH9pXrRKbKu4jn6N2QS6FrnXmQ6mvFa8NXRsIrDpw
 
FZ/0/OKX0qv2muCrGkO1P0X/lvpD78NjfObTqpfnq1brawOBwOoFDorTqtNT
 
z77TTjtl+4ivkyZNyrnWM844I02ZMiXnUOw1UyPB51THr1d16NpAoL3AL1yV
 
23TesDpCNfKlDpdtLTVCBx98cPY5xYsaa3IDgUB7UfTvzTffnGO9fFW9QXGT
 
/pVLiRqhQKDzEPOhf/mqdC6+0sLiueFzBgL1QNG/4rvsZjf0HwwEAoFAIBAI
 
BAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKB
 
QCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUCg2/F/bm+/Rg==
 
"], {{0, 166.}, {
 
           233., 0}}, {0, 255},
 
ColorFunction->RGBColor,
 
ImageResolution->72],
 
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
 
Selectable->False],
 
DefaultBaseStyle->"ImageGraphics",
 
ImageSize->Automatic,
 
ImageSizeRaw->{233., 166.},
 
PlotRange->{{0, 233.}, {0, 166.}}]), !(*
 
GraphicsBox[
 
TagBox[RasterBox[CompressedData["
 
1:eJzt3Qm8pWMdB3BbkrZJlKJEUVKKRqgQ2caEzDSUtZkYkQyzYWYoCQmlkdRM
 
JaVNG7JFImU3pdFqaZH2sqRN25Pv4/Ncr+OuM/eee973/H+fzzHjzjnnvs/7
 
Pv/t91+etadMmzB1uWWWWWbGSg/9Z8LkI7aePn3yURPHPPQ/kw6dcdCBhx6w
 
/7hDZx5w4AHTN5uy/EM/PPuh1zLLLrPMCg/9kQKBQCAQCAQCgUAgEAgEAoFA
 
IBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUBgCfHf//43Pfjg
 
g+mf//xnfv373/8e9Of+9a9/pf/85z8jfIUjh//97395DWXt/u5nTYdnZ71/
 
+ctf0j333JNf9913X/r73/+e/y3QbHjGDzzwQPrNb36TfvKTn6Qbb7wxXXPN
 
Nfm1ePHidPfdd6d77703y0NvICPec/PNN6c77rgj/eMf/+j39/meP/7xj+mX
 
v/xl+t3vfjfg+0cSrt0+//3vf5+vfdGiRT1r/973vpd+/vOf52slH00DXX3/
 
/fen22+/PV133XXpvPPOS2effXZ+ff7zn0/f/OY3837485//3OezD9Qb9v7P
 
fvazdOGFF6bjjz8+ve1tb0t77LFH2m233fJr8uTJ6Zhjjkmf+tSn0ve///2s
 
J1pt4t/+9rf873vuuWd617velX7wgx/0+zvJmj02Y8aMNH/+/LzHRgNkms67
 
6qqr0qmnnpoOPfTQtNdee/WsfZ999kmzZ89OZ555ZpYPdrEp9tBzv/POO9OX
 
vvSlNHPmzPTGN74xbbXVVukVr3hF2njjjdPmm2+eXv/616e3v/3t6eMf/3h+
 
pj4TaA48z29/+9tp7ty56XWve11aY4010lOf+tS02mqrpWc+85lplVVWSU95
 
ylPy38eOHZsOOeSQ9PWvfz37AlUd8Ktf/Sq99a1vTcsvv3xaf/3107nnntvv
 
7yXv5GzllVdOW265Zf7OdoM9o8/IPVlfe+2105gxY9LTn/70vF5/Wvuqq66a
 
XvziF2dd8LnPfS79+te/rr0OsHY+3rx589JrXvOavMYnP/nJ6VnPelZ6/vOf
 
n+/F6quvntfv9fKXvzxNnz4975XQAc2AuP6GG27Icmu/P/7xj8/P33444IAD
 
0qxZs9KUKVPS1ltvnffDE57whCwTEyZMyL7CX//6157vIs98BuPOnv3sZ2d7
 
0R9+/OMfp0mTJuX321vnn3/+SC/3UaC7+Pr03jrrrJPXbm2bbLJJ2nvvvbM9
 
nDp1atphhx2yPiMD5GOLLbZIn/jEJ9If/vCHtl7vcMLa+XtHHHFEft6Pe9zj
 
st4fN25cOvLII9OHPvSh9IEPfCA/f3rxBS94QVpppZXSM57xjLT//vvnGK/O
 
HE/gYbDZ9j89b/+/9KUvTYcddlj2B2+99dYcm99yyy1Z1vn0r371q7McPOlJ
 
T8q28Lvf/W6PDzBU+f/pT3/a83621e9sJ8S8H/3oR9OLXvSitMIKK6TnPve5
 
6S1veUuOYezvX/ziF9nf5Zd88IMfTDvvvHO2kSuuuGLWh5deeumgedFOA47P
 
89lggw3Scsstl+Xbc7cme0JMJJ5zD8RF73znO7OOtkfslRNPPDHzIYH6Ar//
 
hS98IW200UZ5D9gLnis57m1f4/Y++clP5viQvXjOc56TTj/99MwFwFDlH6fG
 
znr/euutl7mmdoHOwu3ttNNOeS2u9x3veEe66aabeuUhxfyXXHJJmjhxYtZ9
 
dCDb6J7UEfSbtZBnOm3atGnpRz/6Ua82XZzjWdkb9IS9st1226Wrr766K/Ii
 
TQXOy57n14nBDzrooMwB9/dMxfwnnXRS9hXF+eRdbgCGKv933XVX2m+//fL7
 
11133RxXtwtk/H3ve1+Oedh+HNd3vvOdfn1aNpGOYgeXXXbZzI2xl3XjAVzv
 
woULczxHlrfZZpt05ZVXDrgO8dqb3/zmrC/pDJxJNf4L1AvXX3992nHHHXv8
 
78985jMD5neK3dx+++2zDPCd+RBQlX8+ovgRx89PlDsSL+PNyou87brrrvn9
 
fI8vf/nL7Vh2BrstjiX7eM73vve9Odc9EPjDuBIxwNOe9rR0yimn1I4L46+J
 
+3E5T3ziE3P8Nxhfnv57//vfn3W7Z48XwiEE6gn8/Ete8pIsfzgecf5gQI75
 
DeyAPAE5Zzer8o8n23333fN+OeOMM9JZZ52VY+h3v/vdPS/+xgtf+ML8fvmm
 
r33tayO84keA88R1+d3in8H+bnERvwFPyHYefvjhteMB6T75XDIshvNsBuvD
 
XHTRRemVr3xlvm/uHxsSqCf4gDgvz5I8s9WDAR/huOOOy3EwOzhnzpzMpVXl
 
n2yQEbw6H4HPzMfnF5QX+0mHeD/O3d5qFy677LLMZfrdeD1x/2ChZkEc7LPy
 
l6NVt7CkEOO96U1v6tG7Q7nv6h/E/j5LD+BEAvVEVf7JML53MBAD4ADYfjaE
 
7lC/V5V/P8eR4QnWWmut9LznPe9Rf3rRAbgH7+eHtNP/r8q/eqWhyDAOQLzk
 
s7vsskvm0uqEqvzL837jG98Y9GfJv9ivPLOvfvWrI3ilgZFEVf7VvA3W/uPO
 
5IPEjuy3fLHYuSr/5JqdOPbYY9Npp52W8wTVP73k1+XVRyP+r8r/UGUYr4k7
 
K7oDL1YnqPdz3a5f/CUOHCyPf/HFF6dNN900f/a1r31t+ta3vjXCVxsYKchz
 
88k9S3WfhccfCOJHtUG4MzZejC8urso/fhinVmrmSz+N95W+GvUF6ohGo/7H
 
vpXDH2rs4brFPnwfMY6c+WD1Zqfgt7/9bX5+8jdqHfH4g+m9wPHgcnAG7ptc
 
gJxhoJ64/PLLs//HVxcH8uUGqmfBE+kHKbIjDpY3gKXJ/6k7+spXvjJsaxsI
 
rtX+JQOulV8yEI9f6gXVLJB9HCcdN9i4qVNA1vlldDf/7cADD8w+wUA+AL2h
 
D4Bv53NqgcV9gXpCTYc+H7l/dkCPi/xWXzqA7KsZwN2TGTKAA7722mvzvw9V
 
/uWO8Gejwf+rf9PnJPdnL7sOPX9qonoD2RDj4Mo33HDDnpwp37lu+X/Q48fv
 
of9e9rKX5XXJ0fa2lrJ29Rk+w17gcdRARz9gfcGXPeecc7LvzZcng+zgbbfd
 
1tPz7cXvYzPUAtsnr3rVq7LMkB01wcX/XZr6v8022yzX0rQL9rSaF7X9auDE
 
8zhQ9czy49Zc1u4+yfGpgVavgPfwkv/+4Q9/2LZrHk6I4axX/RN7vu2222Y/
 
zjOWy3EPvNR7qQf+4he/mHW9nE+p/dYXHfV/9QYZVAtCXtWD0AG4PT6+2M5L
 
nK7WE+cvXuAv8B3Vj6oFWtL6/5KHHo38H9jb9B0Okg4Qy/Bvybm6f2v3J/8G
 
V/qGN7wh5yzJi/uArxzNmQVLA8/MujxDz9Kzp4NxG3wa94A/9tnPfjadcMIJ
 
Od6j8zx7/U/eE7V/9Qf7pg5v3333zbyO58u3Gz9+fK5z86LrceS4QvuEDLAF
 
+IJS+w/6eUpeaajyL/4fjVwSnSXuwYPb3/rb9EDrA7J2f+Io+Uil7wn/bRZA
 
3Xi/VuAt9Fx5tp699Xv2/Dv3QF2wHL9cLa5DH7g+7QULFkTc3yDQ4/hwfoCc
 
mL3gWeO4PXc6wd/5ivJ0YmVcnZ6YKviOBx98cK778b7CC/YFfJK+E3EEe8rm
 
tBul/19vi7y2eiW5i7L20uvjGvkH9KKeQT5xEyDmlwuVwxUD0IP6gd0DL8+c
 
/NMDdDV/IGS/ecD5lTkw+D3PWk+MHL6XWl79bh/5yEdyzacYsRV8ARyR3JLc
 
fuEF+4L36x0wTwSPLs4YDfCF8Zpy22p71SXz9cva2X81TvJkcia4gCbFvXQg
 
Llb89eEPfzgdddRRWY974fg9GzVP4v2qvxdoHugB+9uzVhdGJvByZJl95zP2
 
t/fl+8mxmpiB+ml8j/eLG+QdRjuexPfxacT9/CHr9vJ3P8MX1JHrHwzKzFPP
 
V1zm+XnRC6WGo0k6L9A/8AL88yLzTYe9/6c//SnrvtYZn+J8suDfmyoD9J41
 
6sus9kDLh8oH4UHlTAPdAbZOn4s6ETmxpoPNs168nv1eQC/gukteoInzf+m0
 
K664InMx7kHVb6P/cSPiubr1OQSWHLgAtXk4L3XCTQdOQw+02UbVnjb+gDgY
 
D0gGmsh90WlyfHhba63ONHIv5AXVR3z6059ubPwTeDTUtegJkOvTt9/0WY/q
 
Hch+6xxCvXLqhOUo6UP/3zTw9fR/qQFTC8zmF6jxkxORE/jYxz4W8t8lKPIv
 
3y8GGG1ubqTRl/xXZ5SqBVD/3zTwcdSBqwVuXSOZZ/v1iYoNmsp/BB6NIv/V
 
/t4moz/7X2qa5DWrtrEpKP2A+jnkfKuzUIr88wPVStZ13nFgaCjyry726KOP
 
bjz325f8V3sUmir/+jDVf+rrcQ/0RRQU+ecbqA3uqz8q0CzI/+t1wXvhf+ta
 
5z5Y9CX/pUeRbIiNyUrTQKcV+Vf363yfAvPey6wzvV5NzH8EHgv5IH0e6oDN
 
fGh63FfmAekF0utWUI3/1SnylZsG9T1qHvF/av71ehWoz1TLHfLfXdAfbi6u
 
nJCa0KZDP4M+eOfeVfsWukH+cTty/7geOp8vVKCeu8w6DPnvHpQ5zyX/1/S8
 
j7kGZN9MUjFvQVX+5cbVxzUNdJqzEPB/rfJf4v+Q/+4CDsh8Rz2h73nPe2p3
 
xsVQoe5vzTXXzH3LdEFBVf6dBdpE/g/HWeYw6fOvzvQM+e9OOBfa2Xh6f/UD
 
Nr0HwHm3alzs9b78f/LfRP6vKv+eefVMj+IXhfx3F9gAXFC3+P9F/tW5VOud
 
q/KvB0CfcNNQlX/nwZnxX0AXOr8l5L+7oNfFTC78fzfU/xb5N+Ooeg5xN/B/
 
eq9LjUNr/G8mEx445L+74Mx7c6DMvhH/N33uQ5H//up/myr/ZQ5bb/yfGYDs
 
QMh/d8HsDzO51P+o/296/V83y7/6f/l/NX6t8s8XKmfEhvx3D5zFs/HGG+dz
 
Acr5vk1GkX+xrn7/gm6Qf7rdOca95f+D/+9OmG2tHqbb5B/XbcZlQTfIv95O
 
sw2c5dwq/2Y46/8N+e8uFPsv/++cnKbn/6v8n5q3gm6Qf/6/3obe/H89v+6J
 
2mD7IPp/ugN4n7Fjx+b43/zXpuv9bvb/zTLX96//p1X+zfwxE9w8dHmg6P/t
 
DhT599zL+b5Nhrnm6v+60f+vxv96IK+66qrc7+WF/9P/Iw/kzPam74PAw/Mg
 
S96X/6/+r+n5P36uPlexrpo3s37lxfTC6oNusvzz7cz8N+tBzRfdbwaQ3mf3
 
wtlMdIMZgeH/Nxvm3ZpxSdeTB3Ef3/CWW27JNcBNrQO0z8m++n/zjvDezkHU
 
F4cHbbL8V+d/Was6x8MOOyzfB8/eeVC4QXMgQv6bC36gs7D0+zv3hu9v34uJ
 
nQ2mR16s2DQugL8zf/783PvnbE/5bnKAD3D+FR+ozP8TDzQpF2LtzmtxxpE1
 
OvPMup2DWP4k++ZAdoMf2I0gz/pa+fzqQMR7eD97Xz28c+DkgPWGOAP4hhtu
 
yOfGNUEO5DXotLlz5+ZeBzJgvzvvzywQPhD5x43ph8YT0AEDnYPU6fDs9P2b
 
8+48Q+ebWrsYAAeiD9BZ0O4Jv4BeNCNIPOSskKb6gd0Ecu9sG/1efDv9vuZ9
 
qPkX+zvzTsy35557ZllQC0Ae7APxMjlwDmAdOSF+rLXrczbXbvPNN89ybo3y
 
nnxgcnHyySfnc0HpQvdGLSy/WH2kWKBu/jC5NctNbG/O0YwZM/J5xuTc+ui4
 
Y445Jl1wwQU5JtIXJP+H/3M2sHMg9UfhB/gCoQfqh3LWlTP9zHR1vrfY1x5Q
 
/0re7X1nY7Pz3ocPcD4GP4BttGfEBPaQ99WlPoDdY7/MuBXnmHHKxylrN+vf
 
2p2FRU6sXz0wfeDsa/yA83BxgmIGZ+KYn+Wedjroaf2Lznun162Hb0fnyfU4
 
79y8f/2A5FpdkF5AZ6I6D5XuZxs8e/4SntBZSeLG0AOdD/4qOXWWJd2u54td
 
p/f5fP6fTJD36rxvz5YcyAuzlbiBNdZYI8uNHoE5c+bkfmG8YafaQ2tnr+gq
 
Pa32ujjf/mfXyDMdZ787D6MKPo55yPQAPpAPgCvweWeCLFy4MPMm7lknxkSu
 
yZrE+Z4vG77eeutluZfbN998wYIFeeZr67nO7ht+0LPXB8YXov/sF7NC1Q2a
 
FcefqIsN6EaQS7rfXE+5Hvoe12MPkGHcjri+qss9+6peL2eC8g2dF+M7fJ4e
 
mDRpUvYl2EP2tZNiArbZdTvL2H7l69N5bDldpr/J/h7ofE/xEr+A/ysGwovS
 
AyVeUDfEHrKbncINkElx2jnnnJO5Hbk8vC6dZ9a/+Oaaa67J+qG/a7YPyhnp
 
4gP8AN1p/XKGciXmhrqHdfCFugXkkH9Ktp1fv/POO2d5tf/pfr6+elccWJH1
 
wg3R6eK81t6/Igd8CLUx9pLvYw+nTJmSa8bY2dHmyEqcw66p7xs/fnyO4/n6
 
+A06jC7DfQ7FfyVT9Jx6ODGR+0kOzA+ePXt2PjNP7cBo+kLWjt8o+p7P7hlZ
 
vxo/8orD8J6hPCN7w9r4Qp41rtj38glwBfZE8YUiJhhd8Hf5+nLZfHs+n72P
 
zyH37DW9UGZ7eV72tjNvzH2eNWtW3s/e0xvYOX4/eyA3YA+ID3FI9tzll1+e
 
7W677QGdx54tXrw496/w9dk914a/4P/yd92bpcll+h38BveIfPl+OTMzdE45
 
5ZR8brL3tNMXKnGO87rNbRa3q2vkp8lpyvN7tvT90uhm+2TRokU5nsCZ2FP8
 
Kc+en0E/4BG8r1N8oW6Be158NXWdbJ3nr45DnGtvinOruVxyYLad/ey8H7aM
 
f2fPmI3dF8i2mZjmheDFS0yAH+Br4MjIQbtiAmvnm/B3zeu19hLjk0u+Pj+1
 
Nc5dUrCHfCTnZLB/fCo6VmygpwbX4HroypG2h9bONpvdpH5nww03zNciVp84
 
cWKWVRzAcJ7lws7ji/QGsQF8Ifyw+ABXxP8YbV+oW0AW8XT2t7iO/JW8lTOc
 
2Sk1PN5TdDKZ9P/0gRzgLrvsku24GJFOF9fy5waCvU0O8Mf2GjtbYgL2V0yA
 
Qxspv9Ce5mvwR/ge7BC5V78ir6l39dJLL817cSQ4OjGSeyjGYnOtX0xQ7nv5
 
3SMhB6V+Qy5Tr9a4ceOyrvfadtttM2+npp8OHgnYS9Zmb+FX1BK47/IF9iB7
 
Y56sfVa1AfYBPYw37u/lc3Rbb/uGDRPD+J5O5F7bAffU+ul28Rd/jM63//H7
 
JV9PPsv+K5wwmSSzbJccoBw4+beHPTc+3lB8ZM+DDNIl9IDvdB3kUf0s31PN
 
yXD5hXSedRTZk88r+ktsyhflv1T5jZGC9eBaxNVyInjVUkOFa5NfcD/t5+GI
 
iTxDz10uk9yTNTLnfstRkEU5Or5gO2Jx68f7yJ/ac/yPUkfl//lC1fpp+oiv
 
4rn197Kn+RHiiar+pPPpNT4mX3ek9FunouTz+JfirenTp2f/m93h7+K73D9c
 
VfH17QN/xwnj/cgk/pqfKHbFDc2bNy/bkoH48L7gd5ADtWLsrjmC5IBN8Hfx
 
hTiDbl9SOaDzPG++Scnn4Tf8Dr43Xo680Ynt9j2tiY5TG8F/IgdkEgfhnA26
 
2HWT3SW9v/wNz9CcFjE9fa9Gxz2gA8kgfd9u7sV6+Hj2nGtgV8g/DgIH5ecF
 
7oG5g67dy7V7r+fnJZaiz+xPsYUYA6dT7JG5pfa8z7nP5KBbUPp0Cv/E1vD3
 
cDD8P/eKPyZ3W0AO2EFn+4jVxfh8dHuTXLqX9qz7Olz2Ajegn5YdLvWk7KF6
 
c/zUUPPmrsv7+S1iCjE2H7v07tr75F4MRAeNJvfkfuPhXA9fSH0RXoSOdj/U
 
W/Ob2bHBXKf3FJ5Gzl3tntjGcycnYjf12dbOxxhtsDO4Af3jcgVsAc61wN5V
 
g6TuWH2xNeBR3R8vcu9n9qj+Q74k28THsA/kdfhVPm/tVd3SVJR4XT8ePoed
 
I/N0P65OzS75FhMVGfYnH5mfyKenH+xDPB09SwezoXj/kbCVfBRyoE5GbELH
 
8wtdL/9jsHlz/86meb/cHbnnV1h/O+LcJYF771nwheQg8a/uvetWe6C2TrzE
 
R+/v3pf6Dbl6Mq72xrp9l/x74drYhE7i20v+max6xlXusSr/dBg7xo/ll5o7
 
YE/Snc5d5wvQAWw9rtX3dJP8e6b2P7snHnIWDfmRc7IH7Cu9Kf697KPyGTLD
 
BpNz95GuoEvF+HhC3Iz3jTQKVyxv7neL0127mEMtcV9581Krz5/xvhJXi3PM
 
q+C3iPHbFecuKfj7cqJ8L9fND+IT8A3YSM9BzFXlyEq9sr0tX0t/eobiHDG+
 
ekRrd986ee29oSr/8jS4CrAOL2svPansGj9VPzpeg19blX/ch7pm+0TdClvm
 
hTOoe01S0f32P5+PH+3545h32GGHzDXZV+SrzG1hc/mJeGd8OFvJ5vKT5WbU
 
+7GVVT+hHXBt9rNn77o9f3JMD5S8uXoD12UN1lTyzHQGm8cftF/EvcV3qEvt
 
qX1oT5JZuVk+bpWnVa9Ah7tHfDa+rjiH/1zqldlAPRvsYOlTqCOq8m9P81t7
 
gz2DM7Fu76UDxRH0ArvvZ+IgewQXSFfgg7zkQfmd7mPddIB1F7/dDF66jpzY
 
A4Wnw5+Kscva/ElXkG3+MP1AZvgJ4n32s8Sdowk6B8+AbyDH7KBrJAdqk/jK
 
/FnyXepW6S+2r/To4PbqIvet8JzoLRwILqTEufSaPavGmP/L1rHznjndTUfq
 
3ZHvaIfPNpIYjPwXW8a3dY/0YbtfbD89Kf71efcGhyX3yC6SE/sJ3+Rn8iN1
 
O7uR7SOr5k6UuhI5LXqNP8+OFLkvfiJbWepSSx7MZ3Gv9lP1M50Atosep9/0
 
EJR6UvoA51t4TWuRzxAvt/Yn1RUlXyj+54/R6fw6e5nMy5kWf4f/ph6TjMj1
 
d1J/xZKiKv/0u5otfn158QHZCHaAb4Svkp/mA7NfOCU+oc+X2SX2i3+XY/KZ
 
whu4n2q961QjQMfjs8XrbB/dL59Hxovut4fU78oFsRl0AxtK7skN/8hn9Ph3
 
6uyW0mMmfsP34LbKzB3P3B7h66gxbHe80g5Yj7wMzkvNoj3MhsnH8vlL/YZ4
 
tpN099KiKv/4HLlRfl958eX1GdvD7oW5LOQYRygmrsb/ZpSIa90nuVc6Emci
 
FqA/7Sc+QJ3OsbYWOS16TY8m3Y/fLfufX1Rqb/n1VT8RH05m8AL4jzrIDD3g
 
WsVrcuaeK59OfZJ1NsHm9Qd7k08rp8/Hx9uceeaZOf7rVN29NKjKP/nl69B3
 
fAEvvqCfmT3GnomN8NUldq3KP19fzrs191PmF3uP+zlcdd/tADlgw9lzHFCV
 
17dOfqOcqhi/xDt6W+VRcKninU6WGb6Yfe1V9cs818LryP2Q/W6CZ8Yf8vzc
 
m07K5w0nqvLPttvrclo40epLHKTPlC4Uv5b7UZV/ekOs3Hqv/A5xVR3lnw/E
 
L+IPqiktoAf4Au4JuV955ZWzn8BHKP5PJ8t9gT0up8FHEQcXsIFyYp4ZLqz6
 
b4HmoCr/7LxaEBwAm1198fdxPq01TVX55++KH/v7HXzk1tkunQxcV+E0qvLP
 
T1QDghMTF5V8nhqTuug3elqOAi+J38R1FIT8dweqssnus99DiVMHU/9TzrH3
 
Hryg+LIuIOO9yT/7717Jm+GExYv4ozrY/AL+Pn+Oz9d65nbIf3dgsPn/vjAY
 
+Rcjqw3wHrnUTqiLHizIvzncrfJf8kby32qd6lj/Qc+reZPXUIOsL7Ag5L87
 
0A7518dWfkfd4n+5MLkLnB4/pmlg//EXrWdu0mulriPkv7loh/yXc+zrKP/s
 
o5ofHKjahaahyL/8hjrAgir/H/LfXLRD/tW8sS91lH91O0X+S29Ek6CGV62C
 
XD8+o8C8MP0cnpk+PzU/geYBX60XFceFw67GuIOBHgC14urj1ITriW0FuRE/
 
e4/Zb62zbDsZJf+nbl+OrGkwl9Scklb51/+j1pH8q/3XzxBoHtSsql9Rw2se
 
8VDnd/ALyxku+sZ6qxPR9+O7vQfHVCeurPj/TY3/9b7w/1vlH2ejP5b8m+vS
 
xDN3Aw/Pc1DDLw9M9ofay4UH1x8g70+X9CbbZVY9X6MdM+CGE/r3zEXRv2Te
 
S9PAv1G/0Cr/agHUNEb8H+hmFPnHj1X58aZAXb8+l1b5j/xfIPCI/Jt7YCZS
 
06BWWU93q/wH/x8IPCL/epjVQTcNJf/XKv/iwVKzFfIf6FYU+ZcbbWL+z5wS
 
8y5a5V/NpnxQyH+gm1Hkv7X+tymQu+mN/zMPqMx1CfkPdCuaLv9mXfaW/w/+
 
LxBovvz3Vf8T8h8IpDzPyOyjpsp/X/xfyH8gkHJNo7lnTZV/9X/mvoT8BwKP
 
BfnAjzVV/vvi/0P+A4GH/WP20ex35/g0DSH/gUDfcCaG+R9mITsvqmko8h/z
 
vwKBx8J5BeZ/sY9Nln85AGeXFIT8BwKPzP9tav9vkX/n4OoFKAj5DwRSWrBg
 
QZ6P23T+T39DzP8MBB6Ncv5X0+VfD6A5bQUh/4FASqeffnqWj0033TRdcskl
 
o305ww7rW3311bP/7yz7gqr8O7/RmYeBQLfhxBNPzPwffrw6H7cpKPV/7L/z
 
zAuq8u88Y2e+BQLdhsL/m1/c2v9vVprz85xnZMZZHVH4jf7if2eD3XHHHaN4
 
lYHA6MB8PP6x808vvvjinp+bYWhGNvuph+7666/PMXLdzoZ3pvG66677mPkm
 
Vfk3/9dZ7oFAt0FMvM466zyG/2Pvzc5zrqGzAfbZZ5/cS0dunA1al/OizTQf
 
P3582nXXXfPMn4Lg/wKBR+Zjts7/Z+fNAzIjT/y8yiqrZD3gfOMrrrgiz8uu
 
gy9gdrPzntX+VTm+kP9A4JHzP5xfZv5ndb65c0zFBIcffnieD+Z8Ezz6hAkT
 
ct+Qs1Duueeejj4TWBzzwAMPPMpn8TPnf+y0004h/4GuxllnnZX9/1VXXTVN
 
nTo1XX311Znvc3Y20AfONyHvzsviK3iv8wKcDa6m1hlJZKzTzz0ouuDOO+/M
 
dQFyHiuuuGI+s40eCwS6DTi+vfbaK9t2PPnuu++e+T7+8X333dejB9hH/MBx
 
xx2Xz1PjB6gbGDt2bJo+fXqOFciV81Y6jRtwPfSYWMB1kvdNNtkkxzT6HnAg
 
dTqzKRAYLvCLnV8szlcHaBYA2XAmpnyZM4/KmUnsp3Py9AnPmjUr5wxWW221
 
rDe22WabNHfu3NxDcPfdd3dMvhBH4WxP5zeZdbbddtvl63Xd5n+bfxK5v0A3
 
g22/7LLL0sknn5zPOJUvMxNAToCtdIYymS42Urx/2223Zd9f7myjjTbKPUR4
 
Qmclk6lrr702f2/xH9oNuopPz79xBrAzXOk3vc6uV80PvsO6Oj1uCQRGGmSa
 
vJJb56XqB2Qj11prrZw7UyfofEPcgPfyqfn6t956a5o/f34PN+AsUbVE5E0c
 
gTtoJzfg9zh/md9CP5FzXAW5d3177LFHrgly/k+dzmkOBNqBct5pVXZK/wzf
 
AF/oPNX7778/v9dLXk1OkN7Yfvvtc6+92Bo3MHv27HTRRRdlbmCk9YCYw/nM
 
F1xwQZo5c2buaZDb4MvIb4pP8Jt4jU7jKAKBTgJZZSOL70z+2VB5QOdlmxXi
 
rOMHH3wwv5883XXXXbmHaN68eWnLLbdMa665ZtYFdMKcOXPShRdemOWTnA6n
 
/Inx+S5qFE866aT8+9Q00lt4CbqAr08H1aFmIRDoFLCVuLOjjz461wKyp17k
 
yuyQm266KfcIFL6PfddLg1OcMWNG9gHGjBmTuQFyKY7wfXjEojuWFH6X61u8
 
eHGONfbdd998jinfQ6w/efLkfB34vaGe+x4IBB6GeJ/tVEd38MEH5zrAEudP
 
mTIl1wawvWSx+PdkWwyuf2C33XbL/oMcI7mUYzzttNPSjTfemGuMlqR+yPfT
 
M3oW9e/yS/gnfA4cpHMNXFPk9QKB4YGYgK3VU48T5NvjCDfYYIPMFaixpSdK
 
rZ0Xv/zKK6/MuTc+Az+A7lB7wz7LvdMTg5VT+QTfSXfwJeTw+Pp8EvG+vKQc
 
JP+ik+sSA4E6gkzLp8sJiunJHB1A/rbaaqvMsekjIH8l1uYTyLOdf/756cgj
 
j8zn7uLk2GvxAd5QnqA/kPt777031yUtXLgw7b333jlPKe/ID1G7aL7P7bff
 
HnIfCIww6AG23vwwsienzq7zv+UC+feLFi3KMltiAvqAz37eeeeladOm5c+I
 
1dUZ9DV7yGflGekHHN4hhxzS87v4EnSJGQbO8w1fPxBoL8QEZE+cP2nSpB7+
 
bf311++pseHfe18BPcCO4w3UHqshuu666x7z3ThFOQb+vL5D/CNfA6+/xRZb
 
5J8504NvEfm8QGD0gMeTW1f7p6+Ofy8mkHcXk6sBIMvVWmK1RPrwbr755swd
 
FvDf1e75N9+nNplfIY+Aa+BvnHvuudn/WNocQiAQGB6QablAPTZ6hsk+W62n
 
YMcdd8ycvBkc+IPe5LbU7qkvUn+EHzS3R78hv0K/vlpDfcfh6wcCnQk2ns/P
 
95cfJMNiAn3Gcn9iBXUDbHzhBshzqd3DDZTeIj4Ef+LUU0/N9cf8jPD1A4HO
 
Bz2AA5SnwwmqAWDLnTW433775Xm8+ojUDaoJ8j41QmIHfgMdoN5A3iDmcwQC
 
9QNbbbam2QFqAOTrxQP0AN7f7IBjjz0284D0A7lXXyTGFwPoL8L/BwKB+oKf
 
j/9TI6QuGDfAvy9nc5QzOkvfoN6DkPtAoFkQE6jHVzeghkfdLn5AbaAeAzG+
 
XGHE+IFAc6EuSA2v+fxnnHFGjvHVBkV/XiDQPVDjw96H3AcCgUAgEAgEAoFA
 
IBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAI
 
BAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCARGG/8HT54sqw==
 
"], {{0, 161.}, {
 
           256., 0}}, {0, 255},
 
ColorFunction->RGBColor,
 
ImageResolution->72],
 
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
 
Selectable->False],
 
DefaultBaseStyle->"ImageGraphics",
 
ImageSize->{60.703125, Automatic},
 
ImageSizeRaw->{256., 161.},
 
PlotRange->{{0, 256.}, {0, 161.}}]), !(*
 
GraphicsBox[
 
TagBox[RasterBox[CompressedData["
 
1:eJzt3Qnc5WP5P/CxDYMaKlmSopJSoexNRAijaFCaUo0YScY0QzUZTIORJYwR
 
UilKNWSyJHtE0jYyEaN916Z90fr9ed+v1z3/2/mfZ5s5Z875nnN9Xq/DM89z
 
nvOc5Xt/7uv6XJ/rujc+5OgJk1ccNWrU9NUe+8+ESe/eZdq0STP2X+uxfxw4
 
ZfoRh0857NC9phxz2OGHTdv+kJUe++bdj93WW2HUqJUf+38VCAQCgUAgEAgE
 
AoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFA
 
IBAIBAKBQCAQCAQCgUAgUFP873//q/7973+nm68DgUCgVfjLX/5S3XvvvdWi
 
RYvS14FAINAqPPTQQ9X06dOrww47rPra174WMUwgEGgZFi9eXB1wwAHVBhts
 
UF1wwQXV3//+904/pUAg0CP4zW9+U02ePLladdVVUwzz/e9/v9NPKRAI9Aj+
 
8Y9/VLNnz67WXnvtaty4cdUtt9zS6acUCAR6BPSW+fPnVy984Qurddddt7ro
 
oouq//znP51+WoFAoEfwzW9+sxo/fnw1evToasaMGdUjjzzS6acUCAR6BA8/
 
/HB1xBFHJA1m4sSJ1QMPPNDppxQIBHoE//rXv6q5c+dWT3va06qXvvSl1c03
 
3xx16kAg0DLgFPruhhtumDSYf/7zn51+SoFAoEfwwx/+sDr44IOrMWPGVNOm
 
TUs5UyAQCLQC6tSzZs2q1lprrWqfffapvv71r3f6KQUCgR7CJz7xieq5z31u
 
9fznP7+64oorqv/+97+dfkqBQKBHoP/ola98ZfXEJz6xOuOMM6JXIBAItAy/
 
//3vq6OOOirVqY855pjUOxAIBAKtgJr0Bz7wgWqdddZJPY/mNgQCgUCrcOml
 
l1abbrpp9aIXvai66qqrwgcTCARahi996UvVy1/+8hTDnHvuuamuFAgEAq3A
 
T3/602rSpEnJB/OOd7yj+slPftLppxQIBHoE4pX3v//91VOf+tRq7733rr76
 
1a92+ikFAoEeAb2F7vKSl7ykes5znlNdfvnlocEEAoGWYeHChdWrXvWqavXV
 
V69OO+200GACgUDLwPdy9NFHV2ussUaamfmjH/2o008pEAj0CJyFZNb3M5/5
 
zGqXXXZJNaVAIBBoFcxrMAsGx3zsYx9LM2ICgUCgFXCOwOtf//qkwegV+OUv
 
f9nppxQIBHoENN0TTjihGjt2bNJ6zegNBAKBVkGvgHkNzhZYsGBBzGsIBAIt
 
w+233556BcycOv300+N86kAg0DKYmfnGN76xWmWVVdL5AtErEAgEWgXzpWgw
 
5k1Fr0AgEGg1PvKRj1Qbb7xx0mHmzZtX/eAHP6h++9vfVn/961+TTyYQCASW
 
FjfddFPywein3nbbbaspU6ZUH/zgB5Pe++Uvf7l68MEHq5///OfVn//85zhX
 
NhAIjAjmNbz5zW+uVlxxxXR+rPOR1JO23nrrarfddktnmpx00kmpD/IrX/lK
 
tXjx4uSVkVvpi4zeyEAgMBD4YI477rjUiySG2WabbVJNafPNN095kzMfN9lk
 
k2qrrbaqdt999+otb3lLmu/w+c9/Pnlm8M2vfvWr6m9/+1vKp4JvAoFABs/L
 
mWeemebZbbTRRqmf+otf/GI6y+Tkk09OHl+xzDOe8YxqvfXWq9Zff/3q2c9+
 
duKhvfbaqzr00EPTWQRmPtx5552Jb+g3+CbyqUCgv/HII49UM2fOrJ785Cen
 
GEVcIg6ht9BdzAC/+uqrE+8ceeSR1X777Zdmx4htNthggxTfmCPje7vuumv1
 
tre9rTrvvPOqa665Jp3h9t3vfndJPhUIBPoHziv59Kc/Xb3sZS9LuRHu+MY3
 
vvH/5ThyKBwhNnGG0pVXXlmdddZZSQvWWyC+edaznpVm4olxzA/ffvvtq/Hj
 
x1eTJ09O+dR1112Xfv9nP/tZ4rQ4/zoQ6E3gD9zymc98Jmkqa665ZupznDBh
 
QvXZz362WrRoUfXjH/843aexr9rvyn1+/etfp9gE31x77bXV+eefn7gEVzkf
 
8ulPf3r1lKc8pVp33XWTfrPjjjumub8nnnhi9eEPf7i65ZZbUm0Kb/3xj39M
 
fBPaTSBQb1jD4gdxC25Ze+21U+yCX3CCGrU45j3veU+a26BGjUcefvjhpp4Y
 
j/foo49Wv/vd7xJf3HbbbdUnP/nJ5Ns76KCD0nyZLbfcMmk2ZkHIq/DPDjvs
 
kLRieZc+KL/n98U3eC34JhCoF6xXs+suu+yyVHum6dJceHfVjF7wghckjRfP
 
iDnUqf1M74D+JLENj6++AhzVzH9H06Xd6DWg3dxxxx1L8qlDDjmkGjduXPW8
 
5z0v6Tb+llzK33nFK16Rfi6+wWtmXsmnxDaBQKD7gRM+/vGPJy6hze68884p
 
r7n77rtT/HDJJZdUp5xySjq3xHoXc/DDuPn6xS9+cfXqV7+6mj59evL9qhc9
 
8MADyfM7EN/gNNqufOr+++9Pc60uvvjixCNvetObEt/Qh3GNGpX4Rm0c/6lN
 
yb3ETYHehOtDrCrnjhln9YTPUBwwf/78lK/ol3bOvX9b934u7nAfNaOHHnqo
 
uuGGG1LMoWZEp3Xeo/wm84CYAwe84Q1vqKZOnVp96EMfSnzjd+VSerGb1adx
 
kL/D1/ftb387+YcvvPDCasaMGanXkpdY7EQrxoFmX8V84N4EXvnFL36Rrhv+
 
BvscL1XwTL3wpz/9KX1+eILeIicSf9A5BoKakc9ajuJzl1PxyagZ4SaaipqR
 
2EauQ1PBXW9961tTLnXFFVek+jS+oakMxDeuJbEPDqEr33jjjdU555yTciXP
 
V68CP02gd5D3O7n2qaeemnJw/obXvOY1aU/jE7fvBc90N3yOtBCeFpqtmEDc
 
4Yx7ccpw9dP8OOISWq/rghaj7qy3QM1os802S7GN2APX5OtFjiMXwjdq33hk
 
sPq079OI5FL4CTeFT693INc1m/VTn/pU8m66XvTvq2E+6UlPSrmy6+bss89O
 
+5prJT7/7gRO4Ds54IADki/Fmhcb0F6XtTYjX1Zbvu+++1KtWX40a9asdN7J
 
HnvskTQU8Y2cKvcX0G7kOxdddNGSepHH8Dxjr+pt+Hx91q5H1wB/FP+CHJgG
 
t//++yfNz/XC64lnDjzwwKTVfe9734szuroMcqLrr78+cYvP0fp2nv1I4pbh
 
gqZin6Gp0Hvl0zwuatziG94Xuq26FO0m51K5l0mt3Cw9+RHuw11Rm+4NiD1c
 
G3xS8maeCD0m8nS+TNcIznHmn76UOXPmpGvDfohn7Inu42fi59iHOg/1mi98
 
4QtpT+BvUwO2jtvBLc3gmqLtyIVouGpAcjJ1qT333DNxnXkz4htcoy6llrXv
 
vvtW733ve1M+h2fiWqovXGf2OHvGRz/60ZQLiUl4Iuw18nU+BLXHHJvYp1yj
 
+lGmTZuWtH48I++m0dD/8FTkTJ2Bz1R+K35Qi/HZWMuzZ89OOm2nYoKsFdN6
 
XR/4Q57GV7PPPvskT5/6Ny4U34h39DDx7AXqB35LvMEfTu9XexRDy33win5Y
 
vig80eyazBoN3xRPOF8WXrInTZw4MfGVONn9Is5dfvjDH/6Q6r3yDjEoLdc6
 
5ofrpn4fz0V9AOfRcMXH6gae90477ZR6s8VbOClQH+T4gx7Hb7DddtulHAe3
 
8Gsff/zxyTcpz8nXY/ZHNfOGqznS+dUQab65x22LLbZIsbCaKB6L3tn2w+cj
 
rvQ5+AzEAT5POUq3c7xrDZe4luTZeq/lVaHp1QO5vsivTT/RR09rUw9SV+Q1
 
MJ+s3OdyX4nrUy6PK5pdq9lzrpbksXlDxeV0YfnTsccem64Z+1U37aG9Au8/
 
nhe30Nt9priFRq+2U7cZup6v6y7y6+5H7nWVy+APuQytj3ZLa3nd616XvJN4
 
B//keYf2DbUAvEC7VT/CSTwMA33uvi82ouXxfMr75dP8V/py586dm3rlBsq5
 
AksH7yc9w2eZ633vfOc7k64WfB5oF+wBeuzltrRYuVDWYs3s4F/hk6KhZc4w
 
y0ycKn/iZeDTxA/2RBzzuc99bsh9BZ/ZN/XE8lbRZvg7aTNqpfpf6HzRU7Ls
 
8F6LK2mkuIXmQk8TSwa3BNoBHKE2KFaQf9PLXHc4Qh1QPMLbhEdy7Jzzp+98
 
5zspzsAreIivTrxDs8UXegWGE3vkXhZx0QUXXJDido8nbvIcjjrqqLTnls8h
 
MDJ4f8WXPhvvq32A5oVb8E4g0EpkTz+O0Adr9kZe0/rh1Z/FDnIlsU3+HXEE
 
f5zcx2xDfgS84nqVE6k5877grJHmNXhG7wiuoyerC+A6MTyvHk8Ez3jkTCMD
 
vVxc+trXvjbloLQ03KL2mz/bQKBV4EOizfJB0ljECOrF1rLYWQxh1nvJEdmv
 
K46gBdJi/Y7rVT+JnhG99O6zrOeei9XVkXCY2IVvL89RzB5g9eysAQUGBm7B
 
1/wt9g61ore//e3p8416S6CVEB/wPNi3+B6t26yp8kOa06HPXgyROSLzimuU
 
X1ePPR7CLWpJNBN1Tvpuq3N4sZL+OL24+vppzHQDvbiHH3546pmjGcU6aY7M
 
Lep9OQ6kt9x1110RtwRaCt5bHgG6iBwcp4wdOzatVbwifpYL5Vwcv8if5CNm
 
Eopr+FWsb+vcY6gl3XPPPW3P3z0P+y1+EyvluImGTDOiD+HAWDP/D7iFLzdz
 
Cy+kWBC3hN4SaBXs7erA9np7V64Du954q/Smqs/kGCDrMmo6zrRxHh8vthlD
 
2a+r7w3vqCUtL71V7EUvltPpudVPaT/2nPTZ8m/qeStjr35FI7fYS9QEv/Wt
 
b0WsF2gJ5DV4hSbi3Cs9hlljoZXytomdy/Uov6HdykcyF+UzJORPHsd1yx/X
 
KT9T1qTVvukIPO35DC88I6bCjfJA3Lc0N3GQNer/4r7sRc4375PbcB/PfT2O
 
99otzxfIjy+esO597e/6Hf/2d93Hv31ND+ONK/+273s89/N/vkQ8i1vsIzhY
 
3479IGrQgVbAdSQXMhuVXmKeBk8Jvjj66KNTHz7uyf2muW6jh4h26376AMQs
 
ajh+x3qmsXRDj2r2AZoHYq6a2hd+UVM3R8TaUvtSj9W/MNIbDYrvz/uEa8V+
 
5c/NTON/He7j4XiPY3atmz6uW2+9Nf0d3/fe0s197e/6Hfmqv+s+/u38eP2j
 
fI/l36aBi+k8V//nU/J+2BPELXQqOVHELYFWwbrDE/QSHKGGTId1DoQesTIX
 
sufp43Dd2//FAurN/G2uU+vU79g3u61Wk8/OoM3QiMRY9CE8w6enr1ada6Q3
 
3kLatz5dvZzqa40/l58N9/Hc1+N4T91oXvq3PI7vm1mBx33t7/od//Z33ce/
 
fY07/W75t+0F+rc8V//PuazYhd4ibgm9JdAq4A71Zdxihpw1p3ed/1v8nTlC
 
HK5GbY9Uo3bt0nvxC56ZN29eqjMtjY9leUN+R9/V58a3ow47atSodAa7/EB/
 
zUA3+g292vvl33leo7WqPubn5f2tXxzhd7xn7ufmd9wfR+Tvucnf3Mrvtevm
 
OeBWr93nLs6KnCjQSshh6J+rrLJK8snpVZaTZ41FLsQHK8Z+97vfnfZ4nMJz
 
5Wv9hWJ3v1M3r6x9Wu5hr7fG7P38x2YCD3SjC3uPaNb+Lb8Q5+Eq+YiaVXl/
 
XG3WGg43E9T93Gjh7m8GRf6em/wFh5ffa9fN36etee28dHSoQKCVkBvxoLnG
 
9Car3WbgGD3N2dOfe4XE1scdd1zSANSo65yr05/5iL1+fZNyO3WngW7iHtoT
 
zdq/8aqc0b5PSzZ7ory/+4rp5GVZa3XzO+4vLszfy+e0NH6vXTefrXqf1+6s
 
IN6hQKCV4GvVF+gaM7tSjShDjcEeJ2ensYj9cw+hXAmvdHsuNBS83ryHi8/6
 
6Tw/XEjbXmGFFVJ/NF0tEGglSn4RozgbJMM+am47j5p6tZ7nXpuBUPILj7K4
 
okSOM+o8L8Q+4DNr1G3lvXT8FVdcsdprr71Sv3sg0EqU/EKnVVvJsKbEzOY/
 
qd2aidxr+p+arbzQ63/f+973OE8vfTvPvqrzLEU+OTNFG+cqyPUmTZqU4hc5
 
Mo9CINBKlPyiluLfJXBM9mz1ItRM1G29/pNOOulxfh31MH1M1l6ZN9YJ4kx6
 
tBx35syZ6TyxDPqQ8z28djxDSwsEWomSX8TK+v/6CYPxCx+b2pIaszpTHUGj
 
VxNbaaWV0nkiYpmMkl/oMHrQA4FWouQXe7Xeon5CmR818otaMX8Kb6sZD3UE
 
fuGdbFaDDn4JtBslv5hrWeov/YCs79rf9Uc04xc+OR6XOqLkFz1i6n4ZmV/o
 
L3qz9IAEAq1EyS/+328aX+aX0aNHJ+9cqTNlfuGnpfHWESW/6N/Q65mBX5wJ
 
pH6kNs+nEwi0EupDrrt+9ViV8Yt+77K+ov+Ph16/Dy9hHVHyi/kapf6S/S/4
 
xfxLfBMItBJiYrUD15/zefs1P2rmf1HTdZatXiNcU0eoH4lN8KeZX/oXM3iP
 
9Ybgl9BfAu0AD4Rrq5l/tx9Q6rtTp05Nvv8MfUM8y2ba+LqOwC/q0vK/Rg9d
 
/uzpL8EvgXbAfCi+F+tr/PjxyfPRT3AWE3+y16+Oy1OXoR9Rzyd+MTemjpAf
 
5filkV9KfdfZDnpdA4FWgt6i98T60uvWr/Vpa2z27NmP01+yvmtmgz6sOqLU
 
X+RHznvPyPwiP5Ib9lPvVWD5gOefruv6M7us9Hf2A7L+MmbMmHReUrP6Ua/w
 
S2MPQMkveiP0mwUCrUTZo9+P/rrMLzx0NJZy1nfpfzGvpY4o+UUe3FifzvmR
 
M6XpvYFAK2HeCV+n62/vvffuO/0l84u5Nvp0yj7pzC9mEZtJUUeU/DJhwoQB
 
+wP60ZsQaD/EL87q69f6UeaXlVdeOeUI5QyDzC9m9DqXpY4o+aVRvy/5Jfqn
 
A+2Aeom5zmLkfuYXa4xHvvSYZX5xNoI5OHVEyS+D1Y+iPh1oB5x55rybfo9f
 
sv4kX8yguZjN3Q/84jy10vtTN/BFmi/BL9prM4rqjNL/EvzyeH4xk9sc817l
 
lzxfSv3ImVX6BeoIPanmn9GoaWheV6A7MNj83X5AyS/q86XHjKZr9kuv8ot+
 
RrmxsyP0CdDi6ggeC/zIR8AnGHOyugf9zi9lf4AzEcz4z+j1/MhZse9617uq
 
1VZbrbb6Cz2ez9ocMHU+HiZn/Qa6A/3OL2V/QON8KZyy0UYbpbMN9TrWESW/
 
NM73cXaK/V7vQB35RW/VwoULl5yRZw7APffc8zgPU6Cz6Hd+KeOXE0444XEe
 
Vp5dvdPOXqzzfMxyfl0z/25d59eJU84888zUg+pzsgeEB7m7UPLLnnvu+bjz
 
SfoBpf4iVyhnLM2fPz+dS63H0ZmKdcRg81/qzC9iF+eG2hOdzeV1lN7kQHeg
 
5Jd+9FiV/KJ/uuzxK/27vdB/xJ/drD5dR37Ry6Anc5111knzBS+77LKIXboQ
 
/X5+QMkv6ps0iYxe89fJA2+//fYlPyvPV6sTv9ClzftyTvFaa61VTZky5XFz
 
hQPdg5JfGuuzwKskZ+Bf6kXdrOQXPsNyxnWv8cs222xTXX/99Ut+5kxHczHV
 
p+vEL2bwibVxC850Bl546roTvALZXydW5rcroZ/6kksuqa688sran2XfDCW/
 
WGulN8tr3nLLLVNvdV3rR3QKc23WWGON9DrvvPPOJT8r52PWxf/CP3D22Wen
 
nnazS33Ngx7oTlhPzq3I9ctyPitYY7vuumuq4cp3b7jhhrTHl3XcOqPkF7P0
 
S2+W2pIzc/3c664rzCZ3tjgvXdkjXfYHyJO6Pccwm8dnQkd6whOekPbFe++9
 
t2fOQu9F4H4eiIH6G2n01hgPCC8IrnGOBx6ihdb9sy35pfH8DtwrduOzq7Pn
 
XF+Rsyh9lrSLjFLfNcOw27V9s8+OPfbY1M++2WabJc29fD2B7gNdJfdPN8bP
 
IEd3bZoPsummm6ac1//t9c4cu//++xPP1FGbwY36Vnbaaacla8zryTALxtr0
 
HpRzYeoGr1OffLkWfY/eUs5evvvuu7v2daoN8QtsvfXWKXZxzdZFL+pn4Jfp
 
06cnjY/HWp2vnHEN/s33edZZZ6UZrvJemoRzgSZPnpz82XSbOmkzYm0xybnn
 
npv2QmtMbHbNNdf0RFw2GGih6oT2h3z2tvfgtNNOS3o/Huqm1++58OWaU2QO
 
mP2AptsrOXovw2c0b968asMNN0yxiTPQL7/88hSLlp+ffU1/rfrm8ccfX+24
 
445prj7/wXbbbZe0GbGAmmc5w7bb4LmJSfhAeD/pSrRPa0wOKEfCsXXjy+GC
 
PmrG94knnpi4xWfutetB4iNR67366quTDlXO2uok8J3PSi87Xff000+PWZ41
 
grVmBi8fmTXmutOLI1eyx5e1P1+rM6jdil1ck+q3Pnf6sP4yjyen6KacKecI
 
1tZ5552XciG+/7Fjx6bXzafLZ77++uunGJyXl16BU7uZL4cDr11+gTN9bnJb
 
n5e9wfmU22+/fbXFFlukPcYaxrli2muvvTZpNJ18/fa1u+66K+Vv8qKJEyem
 
nqNuurYCg0OOJC7hX3Vt6XPfZJNNEl+ImWn21lmOZ1yvfodWYW6kPX/zzTdP
 
a9OatXbVcx988MG0B3Y61ra27MfydzG2nmhrC6/wT8yYMaO69NJLUx3Xv70O
 
60+/sX2zG/lyuLA+xaJ8L2YYyGm9PjyiH4lG6rP33tBO8+fvvdl5552Tlq9n
 
xD7TiXzE33VdZp+unK5b4qrA8GENqk+qR/PZ2c9oLPrG1I9oLzQYvJL5wv/V
 
n6w/c31yTCAG4ksTa9MzrO1OeLfFWvbfG2+8McUjO+ywQ+qzVX/IvKJ2Kx4T
 
2/AW0rI9b140r8PrwZ8XX3zxEr6sA3CB127eLo6gLYlPcEf2GuAVPYI+RzkI
 
vXTBggXJZ7jVVlstef0+fzyrZuh9Wl77hfdavMWnu+aaa6bn1ejPCtQL+EOd
 
UvxhXdnr6Sz0Pz4Z2gzPXVmLyJqG+sMZZ5yR+iTtjznWdn6gNU6bWR71CX9D
 
vGHftbbEIZ4LvrQHqsfjPXzayHv0iewp5BHFr/Zy2jfekTPw/3RrzmTt81v7
 
LMSeehrV+3yG8iA9EIN5Jb1+cSk+Vbv2fvld14FZd/rI8dCjjz7a9teBz+RD
 
9gR631VXXdX2vxtoP+QB1qe9T31lv/32W7I+xQDibPu8uWGlNmPN5XjB/uh6
 
dm3KNXAOr6UYqJ31XnxhfWR+xA/0IToDfjST7r777hvUN5HXKG9MXqPyRfv/
 
LrvsUp166qlJE9Cr1E05k/3e/u415lhSLiR3NftTboE7yxi0GfLnr2ZjRqj+
 
ERzl9ftMzeGizXn97eJZ77/3Pu9T9q2yNyxQf7h26PS33XZbikFwi/jajQZs
 
Xoqf0WZKvsi5Fk3DHijXkj+7RukfznLmY2ulNuOx8B1u4/O371pbNFvxC26z
 
XuQDw+UE3Cn/zzUzcTq+xFk4x9rrBo3Jni63u+6661J8QmOxF4g5cKznKRbI
 
udBwkf0/8l+6Pd8sb4LXj3M8rp9Z963cL+R2N998c/J7yovCp9vbcP3ii5yb
 
yxVcv+IS1xxtxvXbeJ3ZgxYtWpTORZTDu7+c3toXA1kPtI9liXn9rnyFHwIH
 
7LHHHolX/B0x08knn5yu1WWpA/kbnicfr/UqLqDhqDmVr2N5a0xeD/1LLEGb
 
5o8UY7jh1HPOOSfVy5Z1/Wdvgll/M2fOTDmvucQ+Rzkkjd9cmZFw92CQf3lf
 
s6brfa+L7hVYesgp8IXPW7+KnMM6s0/aY/QY026aacBqvTwXu+22W1r/NA25
 
hhgo+2ZGsgY8Lh+ctXXKKackXtG/4HHVl4888sik3aqdtMrHYv3Yr/kv9PPk
 
2N1r8jqsP69joDqL5+w1Dncf9jhiqMY16/dxhvzVey4XElPk/EUMo17Uar0r
 
7zNmbU2dOjXFsPYMHCBOFa/y5w2Vfw0Gn5XHUR/gzXFuSr/NDOlnuF6ta/Eq
 
Xx5fgliBjyRrpzRgfXTlnuO6kb+47l0z6jM5BvIYdB6a43D2P9evvIQPDq+J
 
2TPP4T2zQbIPtdXIGpPXoW5Kd8yvY999900xg728kdO8Z7gXH9Kg5B2DrUHx
 
gtwz558Z3h+xkphBfVkMhVPN2ONHsvZpLO3a77M3gc5DJ6Zped/tGfIyvC7O
 
XRoN3LVl/6Lpup6yT7dbtfRA++BasD/edNNNqRdEzpRjc37evIc25iVyCNyj
 
DqGnSZxN0zAHwb412BwPj+O6dV07azHXkK1t+ReOsraXRw01a0xeh/VA58kc
 
pxbeWEdVy8K96uL0cq91sDn3/CjyO6+r7N2Wc8pHaVp0a3/XudJ4je9M/Wd5
 
6RT+ln1G7dpz9TnQ5tTCxXhiPfrdcPmBpkzHzfN0aT7h0+1vZL7I/ix7Dr6w
 
n7nmsm+m7IHMe6Drz/WkJ8E1ORC/lPUstRt/Q8zgb1ivzo2mwboWl3d/ntfl
 
edF55Ezq+Go11noJPVrqOGb1jxkzJvVxiWUG4gK1E702OIuOml+XXEGd3GPR
 
W+gu6lyD5WXthOdFA5fj0mZ8Nmpt3gcaMM4fjm/G4/BxumZouvYe8V431ecC
 
nYO9LPvPxcy0mVwz4keXy6gbu87yNZPrM3hG3YeuV15Pvs4asXqzXMi+Zs3Z
 
v8XiPBGNdfLlDfsznccamzt3bsrPGvfdfBaBXp/c64QrB5qNpIdBLKAvCHfl
 
XM/7xxtw/vnnJ71H3agb+vxy3wjNyz5DBxLPyNtoM64L8d5AeZt8kT5vb3LN
 
eL9inm6gRO7xydqM2pJ8Kefm8oPca13ygb3Lv8vYw7/xjZiGr0v+JB/wePIB
 
NSl8tTzzgaHgOeOVZr0Ejfyy8sorJ32bvtCsfoaPrU3xDp3HY4LXKq+i73bj
 
TMjciyFv9LmJY+hDak780mptOLHRNyWXFvvgU3xEPwsEmgFPWGdiEteUHEY+
 
Y29S2+G9E9M3y81zbeSOO+5I+5l9UJ7g99Ur/K442r7frbNKmqHkF/3aciTn
 
aphLKQ9ofC00cnp5Pnu+Tt6yspeUNiNvFMvQVXCqnE5u6PMXe9lvaHiuD3Gv
 
PaUXe9cDrUXWQHnx+Wbsx9aUeo/ah54lPjv7d9Zk7FsXXnhhqsW4JvM1pydK
 
LuTx6ugRL/mFLq3utPrqq6f6th6GxnyqzvySgTvkv2I0r4Hub5+g6dNm5ID2
 
EVpw7mEwi7zb53QGugu0A7kMrU89JPdAqq3K1dVHaKRydDyUZ/bTCfl9eTzU
 
herssZIX4kn8ovZlbam5yX/kDvKGMmfI/GLuFz9+nc9U9rktXrw49Sc4pyCf
 
KUWj1qOvl9LrxLlRjw4sDegR9mj7ldoITxqOsX/Lu/GOXMj36JpqI3PmzEna
 
r1yo7tcc/rB/4xd5n5pbniVrromehnK2OI3Y+mvUd+sKnz+OpM2JT2loOEau
 
uOqqq6b3RU1N3tyNulKgHhAz87CYkWYft3dZY3IF/7eny8Vzn3I31EZaAbmd
 
15b5RS5IR7KmcAgdVF+W7wP9ml4hvqFhlefW1hl4Rq4nZlWLdjZK1rzlTfS1
 
3DtZJ30t0D2gtaj78OCag8DrIEfIHnPfr/t+3Qg9Fbx3mV/kDLgEp8gTcYxc
 
wf5tXalz0yryuZLqt70E+a6YFb+IWfFrnmsmtuH5yb1T4YEJLA1yrdW8BPMO
 
/H+kPb51QanvZn4Bfjnap9iNX0gfE03U/e3nvcgvcl31d/oSvZ8/isbGz6S+
 
qI8M5+beSfsNLo54JhBojoH4xVrjy1PDFcPQaPQQWW853uklfrF36I/SJ2Zu
 
FO8CTx6NTe0Q7+Ab/kk8I6fUS81Pw2e5POfnBQJ1wUD8AmI2tTV8oq9PP5M6
 
i3yh1/jFazWLx3vh9fEw59eWe+LN6fF+8efhGfVGNX2chGc6NW81EOhWDMYv
 
eU/HI7QINz7lXFfpFX6R3+hpUDvkL6Tvqic26ivul2tNuU8885Eao/5RMU+n
 
+0ICgW7BYPwC6mR6NPVUjB49Ovnqcl2lV/hFX4C5MfIi2pIektz30Ax4R95k
 
lrAZPzwLvJnqauoBtCq1Jo8ROVOgnzEUvwBtwZqz9nqNX+hMeuzlO+ZG8SbQ
 
bYfDC7l/VE2b15BmI77DMzRg761YJ3gm0K9Qh6cjDMYv1oY1p/+c58598Yyz
 
zurYH1BCLsObjVv0IOlnHGmfh54kPa+8UeIg2i9/pt5ZHgdnHgxnfp64yH3E
 
Ux6Pt5h2TNcZTp2KF8nf4ZHksxgK9g3352Gvsw870L3gezfjRi+5nr+B9El6
 
gvkLZvrRe/UUmB2VfXd1BC+TMw30BSzr+a54I/cbeMx8Xh6vEL5R4zZ/TLzT
 
6PnO8+rpx3RifZY81GIpmrreJ30celUGm9esb1dfKh8oX8VQfMRH6W/Qp+Vz
 
gUCrYTaKniPapJmXg/U7iFXwkf5PdWrroa79EfhAjwfPHN0FH3g9y+plyWfI
 
mF2Gr2jF8s/cb8KfKD7JoG+JH3wG5n/x2civ3F+fgh59+rE5IM6GyHPRmvk8
 
9Wu4v35M3D9YLcvrtJ94bDkd/2gg0GqIS3jpXOM0y6F0AvGK/gi3OnuZ1ZvV
 
oK0vfjr+llbWlq1f85B5iMwxNOc9zxsXh+T7eN9xu54uvbPiSPGUmJKmzn/k
 
/B18I4cTE5lnLD5p7FER52RtTK47WI4kN+Lfodl7XPWwQKDVcA3ax/Uh0SKH
 
6gU371Kcow4rF6hjHda6VhOz5ulJ5nq26ywA7w+Nx1k0YhRaDG0F8I9cSO1J
 
nxtekUfls7f1IZiP7L2mH4th3E/O5dyvxnkRJb+oYQ3GL/IxeZE+suCXQLuA
 
I+xjfGL2vKFmnOAW80D5PcyH0TNQN1jXYgbxgjVt/kY7+1XFhDRjtTY3X+M4
 
nC42MTNQ/crccDO9aK057/S7WT+WG4mB3F+fgpym3A9GEr/4G7jM/Ingl0C7
 
wMNhH1cPUlNVrxgM1qI1qf/P+UZ6s+oE61afg9qOGQy00E6cYyR+wAfWNv3H
 
rFFa2ED6D57xc/UpGguPIy+1/SFjJPwiz/VYkR8F2gk+Vbm+a5LWKUcaDHm+
 
lPs7z4QmWifgEvVosYu5UeZxdGLWhnoNvzCepvvyDw+lLeNGuZKYx34ghnQO
 
T0bJL+pPclmxT7Ob90E/VeRHgXbC3AX+06XhF7MkxfN1gbyE30duYd6CM2g6
 
dY6RuRhmP3gf5SlytuFAfVv/kxyJ5utxsiZf8os5rvInOVizm3MezI3GU8Ev
 
gXbB/uc6Wxp+MRfGGUJ1AS/ZwQcfnDRdtV7PvVO+WusbP4gf9BgM19NHL3ae
 
sdfgPCYcmWeOl/yiRi2PlQc2u5k5rWfVfYNfAu1COX93pPyidqq+UQeUPQ78
 
KOZE+V6noJbE30L/oNuOZFaV+5vJg5vo1NlDXfIL/lGXEiM1u/G86OUMfgm0
 
E2JoM/JdZ/zxPO5qQvwtfOk0RX4wOiIt14xiuUWd+MXapXfwHpsb5cwHZ490
 
sico8wuO4MMbrq/P/dzf3K/GM6hKfhk3blzy24mTmt3wkhgm+CXQTohf8nXG
 
26VfBoeI2V2v5s7yh9EIeMNoi+ou7s+bqv7U7aCxzJo1K61n2gsPfqfnJ1vj
 
Ygjvo/eY3284EHP5XPhgxChm1mQPUskv6mI4VGzT7GYOqHohfTn4JdAuOJsj
 
z6OzH9oXxSc86vjGGjCvTTzuOjTLLl/D5tTyqncz8Ag9U60Iv+Q6cKeB43Cd
 
99E6H65Ors+Uro4XGn39I/HX8c3oT1XnDn4JtAvZz+Ka5KvwtRhloBvtInPM
 
QQcdlM6h62boJdbzR8tUU5HPdUPPFJ8RjRmnix/x/FBnQ+rHwCc+I3Uf+awe
 
xYyR+F/8LTmSzzL4JdAu8K3n+pHZSPoWb7311gFvfOk5rleLMd+uW2E90nHp
 
S56znr/h5iHtBn+bHJTXX67DiyLXHOjccnmRWt/++++f6kbiSXkrj0vGSPhF
 
D6acV507+CXQLtjPd99993RN2k8XLlyYNMSBbvoAc72pm/0v1qj6s9ekTsJr
 
zAvYLWeKeB68R2ZsWt/6LPlxFyxYkLR0Ppd8E4Op23m/s3dXrQ8flbrwSPjF
 
z5wPEflRoJ3Qy0unXZr6tP5evZHdCPu9Om4+v965cN02e1sMwz9Mx8pzFXh5
 
9Vuq/eSb/jCxpT4CeZ6v8Xzj7J2R6C/ei8iPAu3GsvBLt/rr6Ct0CfVoerUZ
 
St2ax8nXzO0y+4XeK46hQ+PEfJPbufm5eVO0YTWxxjxKzKL+jof47gbrhce/
 
egjUAvGavu5AoNVYFn5Rrxa7dxv4dehE6l80UHPdunmOBI6Rpzr/mjfHc9ZP
 
TcfVYyROVG8Wg5nZMJCGRKvHU/IsWs1gOjZ9l1Zsj5Cj0dYCgVZDfsMntzT8
 
Yi2Us9i6AXhEf/S2226btNM5c+akuVndDs+bL0UPgxkY8h/r3+xwe4D4i49u
 
MM4Q06hLmVk11LngYh8+SnzFYzDYeQmBwNLCfDU5/3D1WmvX3ur+5n0PNS9m
 
eUO9XD2anoE3m51j1O3AIfIXcQreaafP2GPH2QaBdsGcNDqFnF89YSi+sF75
 
wfSw0B471X/cDLx0ZgPzB3o9fMh1iF0CgV6FGJnnha+VTjHUTF0xPD+sdUzb
 
7SZdw3PnCcEv5nWL/esWuwQCvQTrj0dL3DKcM9r93P3MeRzKb7q8IX5xvoHa
 
rP8P5wygQCAQGC7ommazdXL2QiAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQC
 
gUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAg
 
EAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgZHh/wDk
 
A1Df
 
"], {{0, 199.}, {280., 0}}, {0, 255},
 
ColorFunction->RGBColor,
 
ImageResolution->72],
 
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
 
Selectable->False],
 
DefaultBaseStyle->"ImageGraphics",
 
ImageSize->Automatic,
 
ImageSizeRaw->{280., 199.},
 
PlotRange->{{0, 280.}, {0, 199.}}]), !(*
 
GraphicsBox[
 
TagBox[RasterBox[CompressedData["
 
1:eJztnQusbGdZ97lpiMZIjEai0bQNTdsUAxiVTwwoBCJEI0k/BJGQCLblolBD
 
SwuFll7Ooff7/UZbCrQFwqUWhCIXobRQrhIUxYDFAu2BAsX7fT5+K/mt7z/v
 
WbNn5uw9c2bOfv7J2jN7Zq0173rXev/v8zzvc9n/hUcdduRDHvSgBx398B/8
 
OewFxz35Fa94wav/7yN+8M/vvvzol7zo5Ucc/oyXH3PEi454xf954UN/8OH3
 
f7A9+sEPetDDfvA6KhQKhUKhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoXC
 
QvA///M/o//+7/8e+59N/O///u+Gm+AcfvZf//VfY+echv/4j//otmzDpPYN
 
7V8oFLYf4IDkhlk45z//8z97rtoTDP2GHAXvAc5N2/itPf2dQqGw/vjXf/3X
 
/n0rV80COSWPc8vzTUL+TnsuAEcllP9mPX+hUNh3oHyUXAEX/Pu///vc52rP
 
Mw+fID/927/929i5bEd7HvmqUChsT8AVe8JRyjvwFNyX3DKLPunxeRzc9c//
 
/M9jNiraxm9oH2t/q1Ao7Pv4x3/8x14mYvz/y7/8S//drHzQ8g3v4ZfUNTc6
 
NnU+jss2KP8l+L+4qlDYnki5Cq7wf3lhow3ke+QfzjHP+l3y1QMPPNDret/+
 
9rfHeAkZUJ2Rff7pn/5pD6+4UCisI+CW888/f/TSl750dMYZZ4x27tw5Ovnk
 
k0dnn3326KSTThqdeuqpG26nnXba6IQTThideOKJo9e//vXdsa997WtHF154
 
4ejd7373TG1o+RJ873vfG1111VUjUuK4PfKRjxyde+65o+9///u7HVcoFLYH
 
khMe/vCHd68PechDxj7faHvYwx42euhDHzr6sR/7se7/Bz/4wd3xfM7/v/3b
 
vz360Ic+1Ot12KZA68OV4POzzjqrO5ftYYNbC4VVArqEeoBzqPqFvjh872et
 
XrLRlnqK9hU+Yz7P32vtL2lTybUsxqDjL8+X52p/d5WA7QpO+KEf+qExDpqV
 
r374h3+4f8855CmP53v3efaznz26/fbbx+xkrgPSDu328trll19efFVYaQzN
 
t9g3Lrjggm7+Zkyw+d5x4fM8z/h6xCMe0f2PHoNu853vfKf/TbhHHlT/aNsG
 
HzF+fvzHf7yXJWgXbW39hiZd2ypATkhZKftp2ka/c93JLcpp9A2vP/IjP9LL
 
b3fdddeY7wKwb3i176688sriq8JagOeWZ9q5FnvIpPGi/jHL2GIstp8xhhin
 
P/VTPzU67rjjxtakUq5StktZ6dJLL+3Oye//6I/+aHc+2go4B9ewqjwFuFZ5
 
nH7wGrJvN9rsT/ug5TllrZ/7uZ8bmy/uuOOOXv5sfT+181988cXFV4WVxpA/
 
DoAXkId4/nnmlWfmkQPSbsvYZM5XDthvv/3GzvfZz362k6scU6xFpd7JOOc7
 
xlSOWdpIW2e5plWBvGT/wFlXXHHFTOuD6sD0xXXXXTe67LLLRrfcckuny8lR
 
2rWYD9JGBuhH+D91b/kd3i++Kqw6GCe59sPzzDpU6h/KU44Bx5nfTdocK2mz
 
+Ymf+Ind9EX2+9znPteNydRdtLMIuIljUragra2v4zzxv8sE1+L12jds8/CC
 
Mmer46Ffv/zlL+/6Wn3QPqLPzznnnH5f+zV919Gri68K6wBtr3ID8728IM/w
 
/o1vfOPozW9+8+jaa68dvelNb+r+32h7znOeM/rJn/zJnrOc+9l+5md+ptdh
 
HLusawHGHmMy4014z/p6ax+jrUPXsKqwL5UT4ZaLLrqo9yffaDM2WY5BToKf
 
0//8iU98YtfPysRyF7+nbVDkuc4777ziq8JKo31+Bc9pq7fAWynHzGIncgwx
 
LvBN/MxnPjP6gz/4g06PS1sW5+Yzxpq29zy/chc6C8cw9hzvk8bUpGvbm+Ca
 
htb50HNnkQntk9ZXAcB3/k8fc251RH/zU5/6VOcX6nmS24uvCusAbe25xnbJ
 
JZf0cpXrgjzLyjCz+gsoDxCHAtQ7n/nMZ/ZrWcoB/v+JT3xibBxlu9AH0zZN
 
22hr7rvqNvfkBK/FNYPNwn6De1qbI/x+5pln9lznPVSvhDOVxX76p3+6O/51
 
r3td9136PaS+bWxhC/1VvBetrFwo7AlyXKc/4aT1waF9pyHlBtf/4C98vF1r
 
VFaCs04//fRunxwH/h7clOtovIfDGAuOnRyH6ljZDm35bW46f4/9F2n/WiRf
 
yQ/f+ta3drMRwj/PetazevnVa/S6kaVomzZK7gk+Dn6fa7Xcx/e85z3d+u7x
 
xx8/OuWUU0YvfvGLx+KLPM74xkJhs1g0XzF+Wn9Un3lsVK7ra9difkdmct/2
 
91q+Yl9sWsJjUheEn3JdzN/3NdcikyMXpU8ukq+yf9PHIddIzBMoX8nd2Ntb
 
GwDtYn995Y466qjRU57ylE7PTB+w9FXhFf5irlDOAqvqw1tYHyxDvgKp38EP
 
PrvY433O00cb+aBt5xBfIY8RQwfaXAfqIJmDRXz3u9/t2wL4Ltfb0i601Vgk
 
XwE4l621PeY9hKvoH234bPhG5P7wkWuKn/70p0e/9mu/1uvsuenzwsZvuk7D
 
dx/72Md634l2PbNQmBeL5it5SbuSUN5hjLQ+pchYrEG2vqOT9EHWId2Xc/Le
 
tt16661dXBx6y3Of+9zR0Ucf3XPU0HyPTLVoOWDRfGX8TcpVvmdecJ+Ue+Ev
 
+cqYBnVtYnpsq/q7cUDJTW457+R6yKqv2xZWH4vmq5Rp5JIEz7JrhenjwDhp
 
fRon8RX+V8D9yV3wO7/zO4O6UI6v17zmNd3+rJel3qLMsSjeWiRfKTOBdh6g
 
L+iX1n4FeJ/+V2z777//6AlPeEJ/LPdJvzfOzWf0qX0Mx2Gnt68zDuKmm27a
 
kusrbG8sQx9Mzsp8u7ySU8Xn3bg4/m/X0TfiK/y8AWOCdUftxYyZXOP0d4xj
 
VJa78847+7Ytwwdi0XxFv374wx/uzy9v0Qf4zaUOnHGE+rAYi5C6oeeiT7HB
 
79q1q89JSr/97d/+bSfLuk8bX/qoRz1qoTp2YXtgGXyF7NKut8lZ11xzzW7j
 
l/gd4kuSOybxFX7bcN5tt93W+xp5PsccPJUygNeS8gd5qFr7yqL0l0XylbLh
 
b/zGb4xxjP0Cr2QOjlxfwJ/B9thG+st1jRe+8IW9zAnX5XqI89CXvvSl7v6p
 
D2Lvsp///M//fEuusbB9sSx7O8gcDOpuzOlyCM+1vvCt3jiJr9ie9rSnjcW2
 
GO+jz1jqhW1MkPbjQw45ZHTzzTf3v7dI27AyXtqD8NGfJT8PSP+CIRsf8k/a
 
j3iVs1o/0byHrg96L5LPsfvN4j9Fe775zW/uFhMPh2FHLBQ2g2l81fphp8wx
 
S/wISDmJdb+08fpMy1NySBsDuJE+KB9lrM9HPvKR0Re/+MX+eNrA3E8OTr5n
 
X68t7cPwqPb6IT/IrYAyT+atmjd+MNt2//3397HQv/ALv9DJlfJxypPozbPw
 
FTwlvx166KGjI444otP/ZvVJo32/93u/1/Vx5h/6zd/8zZmvsVAYwizyVcbP
 
gnl8/9K/MPG1r32tt4m78UzDVYxd/T/btrV8xTHqH4yz5z//+d3++KMyJuGp
 
5E0+u/feewdlR44nXkWfy0X5Y7e/y7i++uqrZ+J/6+rIHVwTuiy+mvTDAQcc
 
MKbP8YrtCD9R+xFsxFeZ4wYOJ4YKzLL+oK/tDTfc0Nu9krMKhc1gGl+5Zu3z
 
D/RXNsZ2mv5iLI4+ivg+4RPturlrgo6Tz3/+893+s/gzmAeK7bDDDuv3b+3m
 
mROYccdvwI3tWvyOHTv6GOBF+LgjA9FuuIXrTbv2LFvmD035N9dYua42/8Pf
 
/M3fjPl5TOKrlFmV0bL/psE4T34v2+29LRQ2g3nsV/pGz4PkDZ5lYjiIaW7P
 
rX0Jm257XLZtSB+kXYcffni3n3lW+K30S0V20UdUX+3f//3f72008tbjH//4
 
/jcXFZOTPhbqbPLWtPw8rTwqr+irAVfJaeqC99xzz1h+a+9F/g/gK8+p7/rz
 
nve87rtWPt4I1rHPNmonLBQ2g2l8lTZX3h955JFdjiVi/3j/x3/8xxtuxMsS
 
w4FdJceQYyrX7rBhyTVD7ZwUj8P/d99991j8n9eR/Jrv77vvvm4N0vGUMd2e
 
Y1F8lXp2ctAsOVtzH32dlK2UtVJGwmbntaf/wkb6oP5VvM9c07OuQdjPmefZ
 
+1QobAaz2q/a3Lt8pr14Fnkg8/xpW0/5AN2FmA/1yNbWPYmv9GFwLKl7tn6q
 
rkfiG6qs8IUvfGE3vSp13kX4M8CBabdKWUtf1mn9KZckP8EH/E9/8D3+V0J5
 
chZ9MGUhfo86Y2krm4aMN0+52bYXCpvBNL7KnOHteGljXSdtrtvxqiygPcMx
 
h72jrTvctnOSPkisDWg5CmhzB4zXjEMx12crR4JFyVb8Jrpf+lrANUN57idt
 
ri/I/X/4h384et/73tfp2l5b5n6x/zKn2CS+Si5kw7dtXr8Vz9vqt8VXhc1i
 
FvkqZQ99lx3j0+ojOCaZs3PNymf5RS96UbdW6FiSU1rZZhJfOaaEcbwiz5M1
 
rQAyl+1IH9NFrg2CRccPboRZ7e17mq8vfVWGOLhQ2AxmtbenbbuV8zfa2jp7
 
6CvYcN/61reOvv71r8/VzknylWO99WGdRS5oxxNjLPOsLALFV4XCnmEaXzmm
 
zLH+rne9q4sT+8AHPjB673vfO3r/+9+/4fanf/qn3b74D2BHyRow87az+Grz
 
KL4qrDP2NB6nPXYS0KuwgZO7va0ZPY/fafHV1qD4qrDOmMWfYZK9dJovdp5b
 
Ozc2o4wjnKedxVebR/FVYZ0xy/qg4xjbdtaNmgXYuFvfBHXCedtZfLV5FF8V
 
1hnz6IPwVcZlzDOejcXZk7XxbFvx1eZQfFVYZ8wSP5j5XoaO29PfnSe2p/hq
 
a1B8VVhnzOt/JeapP5jnt47dvHxXfLU1KL4qrDP2dH2w5YZltLP4avMoviqs
 
M4qviq9E8VVh1VF8VXwliq8Kq47iq+IrUXxVWHUUXxVfieKrwqqj+Kr4ShRf
 
FVYdxVfFV6L4qrDqKL5aLl9xbnKB4YebeRCXWZuPfmmvjbgpcq9+8pOfHH30
 
ox/t6qFRF4ecP8R7znq/9a2jRi45OTgX56Tu0Mc+9rGZ2kd+xbwH5AQBxseb
 
hz+vx5rVhdWHueWyJkDmksx8wJP8PHk+zCnMvvCCOa6yhouYJ7fCZtDGHiaP
 
Ms5pI231+riGeXKDeq5lXqN5v7g228q9mqemw2bAb7UxnDwXOeZ5pvhM/hnK
 
UT2E9pyZj3+W4/0tNmpV3nLLLd09eexjH9vXWPQVZJv9rLC6GHrG87mQn4by
 
A/s8+nmeE92greNCrr5Z6zptJawRRf6sc889t8urbE5h2khbW64Gs/CW12jN
 
MmQf+ITrnLcW0KyAC8xXYXuRR5aF5ATntfZ/YW7lWWPU6bfN1Jm1viIgv1rm
 
/bd2EXIg8J6z/6J098Ji4P1ybOczI8cwPqw9MHRc3ndqit9+++2dTM+GbvDB
 
D36w+86cw4sazxvhG9/4xui2224b3XnnnZ3OQhtp69A1zPIMo6dwrjvuuKM7
 
V9ZpWASUB7gn2b5lyauJ5CmR+TeMn/Jez5ojOrkvn5V55N6nPvWpY3Y06whQ
 
qzKhPL1M20Rhc3Ceyeeufbbe8IY3DB6TnMN9b+vAs59jyX0XVad9CPw2z6Sy
 
Ps/lkNw/1PZZ+HSI0/iM616ELOm4sg+t5zOpLYv6/fazrR7vk+yi05DPLbXg
 
4Czr6bKR4xaZ+M1vfvNuNo69MX8W5kd7v7QZ8D95PcmVTk1ycqcDa7TnnN7q
 
BnzneM1xlPPxrPXotgJtGwDcRBuVqYbkhWnIvnOsLPq5b7nQGljLkLEm8UbK
 
RLSHtlhrZx6wvzHtQ+efBp4pjucVu/rpp5/e2xetEUndRWStt7zlLb1tvrhq
 
PeA8rdwOXD/hnqPDaXvidb/99uvWadr7m89r+3nWrctxvQx5IO29rW2lHXuT
 
rmEWOEZAynKLAufm3u0Ne+AQhtYMs9+5D5utGTSrPphrP7t27RodffTR/Vow
 
tSqVtX72Z3929Pa3v70/jrm5sNrwGWqfBWqQs5asj4/zkvf66quv7vZLLhLa
 
G5xrh3LC7A0M6bvKkS3/zrrelufx/IvUL4Z+ByyTtzaSQ73fm+Vq70s+l7Oe
 
M+3oglri1pdly5qWN91009LWVgubx/3339+/Zw0YPPGJT+zup3V/5Snu9THH
 
HNPtk+OFcdvyUP6vjiiUD5YB7R9D9VSH2jwvn7a6ZukWexfe2/ShQGc49dRT
 
u3lXvzWeZZ9tajFpG/BYgL44z/pLYXPwfllHFOSrYzNtScw5aaO0ZgQy9V13
 
3dXtw3G1plJYReS8yHqq/7O2vWPHju6Zpq61zzYb3HXjjTd2+zkWWn5aFd17
 
X0feP3V77wX3QN8dOO2XfumXOh1f3yRrlnJP2Y97njaJQmHVgHybcUOp6913
 
332jnTt39muF6efLPI0vvOsZzuXtunFhscj5wn5H7kr9iM+xPz7ykY/s7h1+
 
dtoo2eQpMCSTFQqrhNa+xjOb/gv6OjAns/adcQrveMc7ervAIv1+C7sj+zpj
 
D5S54KnLL7+8W/dDlmKOUb9n/kG/xx8YblMu28w6WqGwSOTzPkku0sYoZ/Hc
 
s/6tPsFnH//4x8fksrTxFhYP76NzhkBnR5dPm/ojHvGIPs7kK1/5yphPu5xX
 
8nFhFTGUNyLnVn3V/Pz444/vnvMDDjhgzG+H7eabb+59HLZizbMwG3JdOG1Z
 
1157bcdT6bPA//DVscce28WuCP3/RBvjXiisCob8U/zM55+4AH1Wzj777D4G
 
lNef//mf73WMpz/96d0c38ahFRaDVm8zXhm5SlvVwQcf3K8Hcs+OOuqoXtfP
 
+5RxhGCZcTWFwqzIWIUhH3uebXU93rMxP2O7Uq9AzrJuJuMElE6xPKTPL3Iu
 
94It49exXR133HH9MclPctM8uT0KhVWEXJZriHAW8zjzNbJVjgvGCTJXzv3w
 
XetjWvbc6WjzBeUc4Hfo4L4np4bzhq+uk8BV2qdqTaSwr2KIr3jemZ/RJzIH
 
EmvmjhNyaBmfKMqvZ360Ol/q7+m/gFxL3xuLgL1KnfCMM87ojzfGZm/FzRQK
 
i0Y7Zox51l4iX6VPD36JT3rSk/pcasL3pXNMR/qog/RZgHfUAbFR5doHvgr8
 
z+trX/va0Ve/+tXuPCnjVv8X9lW0fJUxkeZ21geejTyMvj/kkEO6Y1Kuqrl9
 
PjAnmPcTjkp/EXyrWPPTVyHnjC9/+cv9frl26LkKhX0RG+XUMkcavvDE+Kev
 
D/oJdvn9999/bG437rawMeB4c1K3oD/p15Rn9eHlHmhPh6dY3624zsJ2R9pv
 
0fOYt9VLyP8md/GKXQVow6pxMz+Qq5BlyUWGHIVMi86nvcrYZWIB9VnIfk5f
 
0orvLGxHIFcBxgdzORyWNni4ivUp1gwPPfTQikubA8qkvKpPk4MMOTb1vlyf
 
JYeZuvpQnoW9lVu9UFg0NsrnnDkHncvVXfR1UDdJ/1LsLTVmZkfamogFVH5t
 
+xe5ynzfmaMBWMNEVOxBYbuitW1pc2GcIQOkPYsxZY4H/BrB3s6nuDeRnN/m
 
xBTy1dve9rauP/VXYE3DvDDksc4Y50KhMBnJWY43dBh0k4wzxB/IeDZs8Tfc
 
cMNYDRAwVMdgX0Xa8dq6pmkj/63f+q3eTyHrd2KvOuecc3ofkcwNVLxVKAyj
 
1RGzJsU//MM/dDJW+lubk4Y1LeqzII+lTLHddMWssWy9bj+3r1Kvhv/lKuYE
 
kNxXXFUobIzkLDdlBta1XvnKV47Vy5W/GHvE52KnT1ljO4y5lpftL9YAsUE9
 
7nGPG+uzjLM5+eST++Nd5xBVe7tQmI5J9nlhbofM96eeQx0L/U+3k79D5m7J
 
GEH8bOUpc8Fot3rVq141WMMt3283GbVQmBdDfqXM/eYrZRydcMIJ3fq7taS1
 
H2Pbyrqs24WvAPqfNUrhmfRX15dNjjfHmPFQ6beeeaxqDbBQGEc7Jtq6im1N
 
WmQJuIuc8MlVOR7f+c53dvtqw9mXYS4X++3WW28d86dybUIZK3Mn6seWMeUl
 
VxUKk7FRzVeRtTWVv9BlTjzxxLFYQ+wyrNdjz7ryyiuXfSl7Bem/hmxpLaLW
 
Z50+IYbJ/bNGc3suUfHMhcLWgvUtxiX5L1OW4PWaa64Z83NUVhuqjb3KSNt3
 
WxMecC2sN2TuYvRAa6fxPz5YmZsaFB8VCsuFdSy0ZVkbzxxz559/fref9UDX
 
bd0rOWUojg+d9/rrrx9bf0BHzvwWqQMC+Lu4qlBYPhyD8FLmGXA9DDsOcYfa
 
mIG+qOsyZtHZ8DXQTz1zS1933XVdjkPzFaMPGxd4ySWXjO65555u37vvvrt7
 
hefWjbMLhX0FKTede+65u+VGcTMnPHbldYqXbnVX/TV4Peigg8bWGbBRWW+Z
 
+BrlKvzc5easCVkoFJaPlJUuuOCCsbwO6EXIG4xh4qRTzloH3kpdznUG3pun
 
WD3YeCXseGeddVbv/zG0RjpUu6tQKCwe7Toi3HXRRReNreXnGiIyCUDmWIcc
 
pXLLvffe26+PwrvmXWUdkGvjlevFnxaeQu/TVwReVpeEo4qnCoW9h7TrOEZ3
 
7NjRc5ZcpY7IK1iHeB3zT8FVcLM+65mvyv+pRSsHe22ZkzVz8FQ+40Jh+Whz
 
yViTFZjbIWPm9HUgX906yFfam5CJzF2sbz/XYh1T5C8hF3l9+q/5f/mtFwqr
 
CfP+pSxijIo2eGB9MbBsH29t6MAYb7mFV+rC45vBph+odnY+k6va/FXrID8W
 
CoVxkNvBHCpyFz7gyCj4AiDDyA/LXutvfSrIQ6V/Pxu+VelPxntkQ2s1WnfD
 
NUNQul6hsL5AbsK+rnx14IEH9nYs+Ivxb86t1KWW6Z+V+auU7ZCrtMHBr9Y7
 
02cBrjLGOe1UWRO7UCisD3LMEsMiZxmnoryFbkg+mvaYRUOfirRTwTesceqj
 
gFylDyicRZtF5imEu1K2Kh+rQmE9oY3Z2juZDyrzlpLbAQ7Q12kZMBex9qes
 
A6gPhu3Dj5/9U/8TrW9HoVBYL8hTjHHfM9Yzvs66C8ozF1988ZjNe5FIXoFv
 
lPnSb931TNoF1FOtD885eD+pTmChUFgfZF1ixjZyDDJU8oFc5fobuuGybO/4
 
3MM7tIFN3/UDDjigb8+xxx7b7Zv1BNvchvAY+mWtCxYK6wl1rPTTMiYPPkq9
 
UG7wlbW5RUM7v7pf1v5R1jrjjDP6+hvKVvBS1ufItYH0ay8UCvsO4AE5wjoy
 
+f7SSy/tOWFPa7S28S/WVxSuUWbco35i2N2tV5b+++uSW6JQKGwd9FtIn1L1
 
MXzHkXuI7RnCLOuI8ouykLnoQdZaZr0SfuL39FvIuoCtT2nlhCkUth8yVkWZ
 
xvpXbsTBkPdB/YqcB/PwBXzY+pxfccUVnd4pN8FXmQMHpG8C65pp/y9dr1DY
 
fnAdTb8nbEXasOCtlLvIOZw8NW9OZfy/4B3quxoHiF8Vv6XNDLtVy0u0TZ5L
 
+3rZ1QuF7Qk5An4wH426WsbxkM/Tuqyz6IOp/yGXkVO+redjDgm4Sv2PNcPW
 
R4H3WRO2UChsL2jLhhvgCu3p5JFyje7ggw/ufct5Jb8y9ZNnBbzG/lddddVu
 
NRN5j2zFb1lji3jHRNYLGqrPWCgUtg9STpIL4IcLL7yw5xdtWqkjznNu5Snj
 
ang1hxW2K/gsZTZztoOsYSq2U/3qQqHw/5G+Wda8UofDLq7eJtfAV8hDbNMA
 
/xmrqF1MPZMN3TNrjmFPm5T/M+1VxVWFQmEI1G5Qf8scVKwlIiO5jieHyHXI
 
Sqz5sX/a7eEvPkPnLBQKha2CPpqvf/3rO26Sd7I2KfnUjZFOHwR95+U33rPB
 
V8hVhUKhsJVIv6mdO3d28pJ2eHgI27vxyO573nnndfuoP8Jb+qDCeaecckof
 
q1woFApbBeze2rqRoeAiZSzlK3M94A+PjofOKKeZ+0H5Cp917ejrkD++UCis
 
D9p6M3AW8TnG+7V1apS70PngLW3tyGW5xsf5yke9UChsNeQVY4zhmjPPPLOv
 
A0/Mn/zV1pXWfgX09arYv0KhsAikXJVxxrw3dgdOSl+H1n89fara/HyFQqGw
 
VTA/le+NM5R3Lrvsst4+ZQ6rlK1Am4fG/DSFQqGwlVCHSx9OZCx90eEkfd/N
 
qayt3ToRIGvvFAqFwqIAV+n3LtDthnKB+pq1t3jNeGogDxYKhcJWIes2WHsZ
 
7jKmxnrw2NSzhoU8xvfGNJtrSxtY5YMpFApbjZSr0OngpYyvcW2Q3MmgjZEm
 
bkdOg6/gvaq3VSgUFgHt7OhwWUcHTsLGjo8VfqTITa4FGm+IjJU+DrzXjlU1
 
twqFwlZCX3R4SN9P5Sa4Cs5ijdD1vsy3h6096++knlgoFApbDWxVcJFylXIT
 
r3AR+WaUqXbt2jWWVw/ATcY7c0zauAqFQmErYR3TjF12PZB6y9qhWPeTq8jT
 
7ufwnRynnMX5lNUKhUJhXhhro1yErQo7kxwDR2lH18Y+C8wB6Dqir8lfQt2z
 
1g0LhcIQrE/vezmD99ip2A488MCxuhDYrbCVz1OzFD8IY6M5nhph6bulX5Zy
 
WdWVKBQKLeQE/QwAXCGP+CrXpK18Fj5Bn8x1wDbHDLn+eI9+2MZVl89DoVBo
 
0cpY5mrPHMj8j91J7kFnmzXfHvYswP5srW6oLzznh6taX/pCoVAA1l5GtoJX
 
9KdSrtJnAc5SnsLPap7cVVlzR7hmyLmV3eRIfSIq70yhUBgC3KAdHB0t/aWQ
 
e5R34LZJ9WuG4L55jDWbsdm3tSj0QS0UCoUW8BDrgMhT8JK+oAcddFBvX1cu
 
Yj9lHmOg5wH7Z5wz75GnzEPDK7qhtq3SCQuFQgJOMF7GmjeZzwrIUeqA86zb
 
GeOcx8BbaS/z91t7WflnFQrbC1nTQV8F675j+1a2MYeCdiU4ZBlAv0TOss5O
 
2rXSP4s2K5tNq1NhzfqqW18orBcY59/73vf695mDXZvRYx7zmDEfTmpvwQnL
 
sHenPwX2LHRS7O/G/yjruRapXLaRf1bxVaGwvmBcp2wFZ2X90vQpsDYEWMZ4
 
T1kJTsr8M3CVNS14z/eZi3kju3/xVaGwfsjc69jL5Sr0QOxEyi9syFXKX3DB
 
suzd3/zmN7tX+AWdT46SS42RNucfW9UCKxT2PcBX5loH2LS1a7Pha2Vu0NQV
 
lxkLk36n8qs5ALG7Z/4sePbb3/72bscVCoV9B8gkJ5xwQu+vkHms4KqsO69c
 
tQzO0kYG99gGdFf86H/xF39xN/8s+IvP1PVK7ysU9h3AAehbN954Y7/2hkzF
 
ehx8RZ1AfQ58BXujHgS/L/dg16IN2LK0veufpa+D+xdnFQr7BuAf65qmXR3O
 
Qm7he23e1ulaNrCVKVu1sYO0Dd0QjtKOlf5ZxVeFwnrCOECgbef000/v19fS
 
ts6Yv/rqq/dmc2cC3AWPPupRjxrTYfVt3RP/rEKhsHegjXwoF8uOHTvG1tf0
 
DUXHuu6669ZKJuF60F2RD7M+j/yVNe8B9q91ur5CYbvAMapOxdjeuXNn73/Z
 
1jS98soru/3WIf9B+riiN1pD2ms54IADetkRO32uF2wkZ5UOWSgsH+bZc2yi
 
E5100km9PwB2KuUrxvdVV121VN+qrcB9993XvcJb+OqjG8K/ylgZ/2juh2m+
 
pG1MY6FQWA6Uk9CBTjvttDHbjuMYmcR6pmBdfJfglvQNlWfNp5z+8K1/1kb1
 
DYuvCoW9B8Y09qqUO7TtYPN5wxvesJtMtQ71Sm2zNVZ9z/aEJzyhu970KTNO
 
Wj7KPM8JZaxCobA8oCMhK8FV2KOH/Bauvfbaft+s57BOaOUh9D2uu/XPQjdM
 
/yz05I04q1AoLA+MuVe96lVjOpG1/ZA1WAcEyCPauNQF94ZP6J4g63shR2ZM
 
JNdPHnjzyytXaoOHo+WsQqGwPKQ8gC7HGDz55JO7calMgX7ke+WqfRnmkj/0
 
0EN3WweVt7PuD5hki0///kKhMD9yLb/9/5RTTunGpGuBbsQzX3/99XutzXsD
 
yFDY4Mmdlf5Zcpa2Om335s+Cy8z5kEi//0KhMDtc/0vf0FNPPbWzURkTqA6E
 
fKF/1brZqPYU6XcGP6kbY8+y1isbOnHykHNAylRp66o604XCfNDO7PyP/xF5
 
FrSnZw5O5Cz8q7Qzb5fxtmvXru7V2hmHHHLIWF4H+QtOh+szf1bKUMb0yF/b
 
pf8Kha2EeTUZi8hVGe+bNbAuu+yy/ph5a9esM1KX87pTrsr8WXAY/qfIUMif
 
8BbH6O/e1sUoFArzA87Ctp61TPU7Qn7Att7aW9Zl/W8zkFPgcvU4rhsuwj8r
 
+yv5neOSm+jf5Kd18v8vFFYFjBtsxchVQ/5VbG984xu7fXP90BoT2wWtbGT9
 
H2Qr86maR9V+Yx91yczBCoqvCoX5gQ3luOOOG/Ov0mcBOeEtb3lLtx/yhePN
 
1+2gz2TsJGBtos2Paj541ybS5+PMM8/suT35qny2CoVhsE7l2GDMOG4Yd3AV
 
40ybOj6R2pGJ+y1sDPoS7nnsYx87tjaBzGXNRfxtRerQbYwl/J85xgqF7Qw4
 
64EHHujew1WXX355b0s3d7nyAb5GhenQjg7XwO/UAIKrtP3pn3Xeeef1uiH4
 
zne+0726NtvKqvBWrR8WthvUXTK/HLodOdezppU8BX+hG4J1yF+1CjDPMxvy
 
qXqh8YbG8ZAzzPki7WHpk5WyVfmTFrYb0tbiWGBuT3sLsgC8xfhCPtC/ocbL
 
bDB/ljb1gw8+uO/PXDfEFk/MgDzV2rCQpzKnxXawDxYKLe6///7uFe76+te/
 
Ppa/ythAZADWB7eLz/pWIvU2fdqNN2QucK2VPqa/X/3qV/f+pOqC1mRM+Wqj
 
nICFwr4In39zZ6YOmLxF/a2MdwPaWAqTYV9hR8/c7rx//OMf3/Uxenb6itDX
 
xx577Ji9nWPSx6H8HQrbEdqg/v7v/77jJvKRtz5WxPCK4qo9g/qz84P+WQcd
 
dFBvv2LTLx4b4YknntjrkiD5q2SrwnYF61JtrJt+jdhaALymXqMNJXNuFiaj
 
jdfJ/Mq8h7NSH8yaZ9RD0wafx5XtqrAvQntt5gLQXgX/oAPmGDG/L+vszPXG
 
LW+U27ew54DLuDdPetKTep8R9XA2fB9e9rKX9ffRe+d9adcLy8+0sM7wec4c
 
CwB5Cdu6sW3IVYwTxgtcxTogKL5aPOxT5gf6PXMqu+ZBTgzrWHA/uH/GIHJf
 
W18s71mhsE6Qo6wzBdDjvvGNb3RxIvpYZ51A7L1Cv8Qhriru2hok3zhv6E+C
 
zwMbMu9rXvOaXr7yODApf1bxVWEdkX6d2J7gq/SvJv+4c/njHve4Pj+T+Xkn
 
yVbFV1uDXLugz4kdMBei/u/6apEjA3hPUq7if/xNvC/lH1dYR+R4YH5Wx8hc
 
AczpxLhp/8i5u+q7LA/KRPg6aHM3XhoZGF3xiCOO6Pah/5GZ1QvbGj7l81BY
 
Nzj/Yvv47ne/O8ZP2nbZ8F8EzM+uPfG8T6qbXvXUtwbKvsi8WeuMeeNXf/VX
 
O7mK+9TWZD366KPH/Bsqf1ZhXwG8QjwgvMR6E/M0PlXpZyX0UcAW77GTzll8
 
tbVo89Kgkz/mMY8Zi9kh57RrJOQku/fee/tjyj+rsO5gzoWrnJ8z1yWcpX+V
 
NqtZbbTFV1uHjHFSps049F//9V/vuarNQXbaaaf1/llwVMYrFAqrCOP/gflA
 
fW6Rk5SltLFbM5335a+w+sCf9+lPf3rPVcw9WY+I/FmZf6ZQWFXk3Jw2DGxV
 
X/ziF7u1Jv0Q0QVZc1LWevvb3158teJI3wRipYgzxOauj6/zzute97pen6y4
 
g8KqQnt61i+Aw/CvMs4DruI5zzrxt956ax/3X/5VqwtjcIiX5j6R809fUvPC
 
u8570kkn9cepVxYKqwbmU+dWdEHsVTn/ph8P23ve855u33YdvPhqNdHmRWbu
 
YY2EdRN8e+Wum266qc9NViisIrKuCpyFraPNC+o8zPbhD3+4zxOQeS/Lv2p1
 
kWt9ylvUCst4HbgKcC9rbbCwqvDZhLPMC4otVhsHchVzMZ+hA6InuIHyr1pt
 
ZH1tX33/K7/yK939fd/73tfti81SlA2rsIrweWbeVaYyf3HWM7jlllvG8u2p
 
M5R/1eoj69P73nhQ5iDz+8BXrreUP0NhFaHd6hWveEVnp9JnXZ2Q7V3velc/
 
L2demY3qqxRfrQaG5pWUj/0uc2OlfaCwfGS8rmPM+2V9NzEUP+X32myAtma+
 
Ywynzp/j2nufx9KGnL+y9gLf+X4rYyLkl6zHaUwyNQLlKHO+IVfx2Qc+8IE+
 
DwnI6yy77L6P1g/Y8eMz2+Z2yOP8LOtfKMv5vc+TdRPz2cz/0wcWqK9mfjZr
 
AvndutcrY50e/nCctrnKGMt8n/3i9ed6v/sDa8NpG8i1GPut7Xv7kT6Ww/K+
 
tnGnm8UQ733rW9/qXl/60pf269muc/v6zne+s3uOco5u660Utg+Yu7B1ffzj
 
Hx996lOfGn3iE5/o3rt98IMfHH3oQx8a3XnnnaO77rpr9OlPf7rb773vfW+3
 
TsNnn//857vPOQ+f8f0999zTPUuMHcbMpHw2fE5+yPRtZux5/s997nOjz372
 
s107ho5fByR/OL7+4i/+outf+o9X+pdX+v8zn/lM955+/+hHP9r1Jxt9zP8c
 
yyt9wufs98lPfrL7/u677+54zH4XQzKJ7WI/2kX+c85NGz7ykY905+WzrUDW
 
PGf9z+fhmGOOGYtftp4dr/iCJn/Cq6UfbE9w/5m3yAWYPnjaOvGRx5Zg/MPQ
 
lnFc5qBNOynnoxYZ8RTqHvrcM9+39n9zftE24ozS34b3mX97HaEcxLVbByHX
 
czPntf1uH3P9eS/a/duaMMcff/zo7/7u73bze7HPs2a4uPjii8d8CHg2zjjj
 
jC259nZ9mpww5G7L5838uTx32NZzrai1d1Tuye2DvO/5zPvM5DgyL+BQTW8/
 
z3GkzUF/GZ9/6pF96Utf6n4zcxnl/Jlc5Pkyv1Huv45IHStlCvoQm01yRXsf
 
6GP63XzY9EtbD7ztM/b7kz/5k9Ff//Vfj9nPMr8jfMaGTn/++ef3cXm+UmN8
 
q65dUC+F3Li2PWtu8j9ylTzb6sBtX67z81CYH3JP1uPJfKa58Sy14yifOXNy
 
OVayHhkyPq+Z4yNtKu18n/FiyVfrDm19clXKqK1cxX3gNcdzW1ud77wn5lmR
 
7+xzcm/S73CAck7a48UVV1yx27295JJLNn3N6n5yJrq+Ps35DHG/3//+90+0
 
T7V+DKD8Cvd9aAfgtR0Hjhd0AcYDz7/jRXnK8cA8zqu5aN0vxxSyvfO9cUPI
 
WdqFU74CfI5N2pq8qVu262jrglx7U7bNvpZX+D/z+rpl3v6UNx3zyl059of4
 
jftN32a8HlDGuuyyy/pjPAcy11agtbe/6U1v6s5P3gV+j9ebb765l6tsU67x
 
0N6Wr9bZPlCYD8xXWf/WcXH55Zd3OhtzV7ue7vPh9wA7w4tf/OLRYYcdNjr8
 
8MNHz372s7tz5hyateHYfC7Je9PagmkXPJm5Q3i/zr40bQ30Vu+D6+GGVl7I
 
dbFcxwWsr7G29tznPrfLL/usZz2rzy9Ef8uD6pvKqOnTkPPFkHyFTWuzSL+J
 
vD5sVLYPmcs+4pmzjZPuOedcx7mrMD+MZ+dZMP9M6oRnnnlmv29bv6K1c/r8
 
scbn/z5H5m/W5y/1yRtvvLGLvxfwl88mr0N25GzHuqGVIx2nzBHKR8oy0/y2
 
W1izzWOz3q5cry2b3GhDOTs47tJLL93NdnbhhRf2Omz682X7fJVvUg5uOcWc
 
k4B5jueAdci0abJP1UcpiOSe1lbLdsEFF/T7ts/NLGNIOYDnlxqKqcNok+G9
 
MRgt4Dw4Km1qbJ43c4fYnqwn5GvrS7Y35+NF8pXHJP88+tGP7uyJ3N+sz0f+
 
Ic6LXJu1KjfiK+Hchb3eNspl/j8kF6nL5f/OmcxznGOSf1XJUIVF8xW2c+Uu
 
nl/qKzFWXMP3N1lv9zlun8u0QasbJlLuS7/Tdv1eHlOf2lvz9SL5Km1DrlvA
 
Aax3pL7vq+uFrU/9JL6SX9qct967zGGb+yhzA2tjDrXZay3/qsIQFs1XIP1l
 
zj777O68rh+q51177bX9uc27Jhw3OXYAz3M+945PfZuE8z7IMbS3bGCLlq+8
 
duRVORuuYb0j7fT0vWt+HDOPfEXfpwzH8e19y/fJPcpNylUic323/lVlSy+A
 
ZfCV/OF6lGOFsWme+ec85zndvml78bVd22L/BONSTjKuI9GOG2Wr1u69LCya
 
r5BxUnZEZ4O38r7an8973vP6/kl9bhJfMSckT/Fe+bmN85E3rXniOl/2Qxt3
 
P8RL8lvJW4VF85WxE4m0/zoeWL8CQ3yVYwZdUn+GXO8G5JkkNiX9mNjwT2XN
 
6a/+6q/6NgzZypaFRfKVcYOAe6rM6TzhPZav8Jnw/mTs4DT5CsBVX/va1zo/
 
qZe85CX9OfH9Yj4ij8Kf/dmf7XbdopW5Es5xbRx/YXtjGfJVcgN2jDa3vFsb
 
Y+v5k9fkImUBxsyxxx475kvqOFTX1DcDvx58vP/yL/9ykEeXhUXLV/Q391M5
 
iPU21385fxvfA9qY6kl8pZ8cMY3mU8+YBv3u9ttvv36dmbnobW9725j/QptD
 
gvfaFuXcVk6s9cHCMviq/S25RR7Rt3vo/OqDxqgYCwTwNdU/gs+Rvaif0vqx
 
+hv+HjUb8ffZW1i0fNVCOcZ72sZ6gln9GcAf/dEfjfnQ5Vwid7VzBffsqKOO
 
Gn3lK1/ZLe/DNPtUu7Zb2L5YNF9pn3A88NrO8/g1Mh+LofVB61irb5CLoG2r
 
49B8Sa3POMcfeOCB3XvWJ7/85S9vouf2HBvxle2Er9IPfk/011wDxVaXcYdy
 
zC//8i/332eb+H37Wnn1nHPO6XxR+YzzOBfQ166feA/4Lp8nfw/O0sbY2tQL
 
hWmYxlc8txlnmvaRtDW1z1v6zqRv1Ve/+tUxTuE9MhHrhhmHk7AtrG8xr8tD
 
1p1LvZK5/2Uve1lnRz7yyCP7seacr76i77exdCD1j0XmX52Fr5Bvcl6YNT+m
 
fe090YeDGjNyj/0Hp9Dv3pu8j+eee+5Y37ERQ6U8Je/R9/iovOAFLxi98pWv
 
7GIanvGMZ+xm10/5dufOnV2cM0jZaW/aFAvrgWl8deWVV3bfD+W8NH5r0jgy
 
51X6PhMnwu+g38E/xCbyO7fffvtu49g1oZan2LSdsD3lKU8Z3Xbbbf1vYtvK
 
mpnYTlL2Ms8N9ixkhqH+2Ft8ZYwB8TD2b2vD2Whr4XU885nP7GWhjG0itxXH
 
YZfPa6ZflGtbO6NyFdzkb8KH/p4cSQ3fNo5b7kpuqnW/wqyYRb5q/Ywn+R/z
 
nA49e8pLzNk8/64PMj55z5zd6iMg7S4+8+iNKSM97WlP6/yzATE9reznOcln
 
Zx1zNnkSLjQnrz5Ei/bLmiZfsRFv3Orfs+QfyFhM7wd5YNTXvMfKWnJLe25i
 
BW2L80v6xr/jHe/o9svcDtzDvH/o/uibqa9zD7h/xnnl72YcTqEwhGl8xXM1
 
q22hlbWQc/RrZi5u52t557rrrtttbKbPOu1q20b8NHEmgN+Qn3j+GbPKV2kD
 
2rFjRy8bwFe0g9fWD14sav1wI76ifbQLvmjjNX2/0dZeCzk75Rn6O/t/KD8M
 
/cXvXnXVVWO5a5JP3/3ud+9mA2h1uZTVDj744O44uMq2wMd5bNU/KcyCaXx1
 
ww039LV2stabep41KvNcvGJT/cIXvtD5Q6l/YP9obRnocjkv+5o+6cpBvGYu
 
O9qQnJLHmHNX3mI/NmSytjbUNddc083tcuui16KmyVe0j3WO9N9sfS03wvXX
 
X9/lY1GGzOuVr5/61Kd2+2Yu/MyJwFpg5gxKuU/QZ/ZvxttkDkDimJHvMm7U
 
9Y/kPPhq1usrbF9M46u0uWpfRR8wdtYt89f6fdortI2nPsjn+PGkf2PWPgDa
 
r/wdz5F5I4TPe5vXLb9PXwfOQ7vavE5Zf2MR2IivMq4y5ZtcX5i2Ice0a3Nw
 
j5zPeen3STUoaZf29jwH90vuzHmqvS6hLQubfuZFMy9q/n7ZsAqzYBpf8Yw6
 
NzrWh9ap22eb55LjGCPuI08pb1HLAGRcjHpB8sxQjjrGU+Z+ELmGr29jzv3I
 
LYz79C9lvSp12UX7+2zEV+bWlFtSPtLmt9GWx+lnLod575B5kd0yNrytX0Te
 
syEubGOb1LnbekhDa7y55qHfl/e7fNcLs2AaX6WvjvqFW/rzmPNlUt5xuYox
 
xD7EcMAzGz3n6nGZSz7zzyTaOn5tXA9gbGhHts20H/uZ+m7ry7gITNMHucbM
 
pZq58r0fkzY5yXXA9OFku+OOO3q7dvqm2D9+bn5R85Tx2xdddNHUa0s7ZF5n
 
+mrYzqG+KBQ2wjS+gl+G5CrHVet/mFyV+Y/lK+Jh5p1LPae/z+u89XrdHxtz
 
yim812+7Peei1gmn+TPwv7WNk/dTzpy06e/vfVOOpP4MyHpqAF5v1zqG+Ir3
 
xVeFvY1Z7FfIVdqd1FlSP7EOTo4V7BXY15///Od3z3lrK6FG76zrb9uJr7Rf
 
mS8/+R89dpo+yPbkJz+5y41MnWT8Mtt88bluClyXyPYZj6N+mv20EYqvCovE
 
NL5iXRuucU0wc0Za10Y/H+0Yk+qWqH+0+Y2mYTvxldd39dVX7+ZHMsv62VA9
 
Z5D5Drhn6X/Q+iYkX2W7iq8KexvT+Oqss87q953HDyv9yz02c+5m/oBp2G58
 
xUY7jYNq8wlP829Pv12OxU44zdc0OavlK9uUsaSTUHxVWCRm8W8XacNmHrcu
 
SeZQb8dPq/Pl2JvVR3A78ZV2K9bnlEf1dZvFv505IHW9jXzGuW9DfgR8bj8V
 
XxVWCbPy1aQ1/nlyIu/pM7md+MprRb6ZdOws8lUrkylnuZ+x0MVXhXXCNL7S
 
nzmfJ8fDpGeslbPasdPmYZuG7chX+F1ob5rHRyn3z/yr7XUN+Xp6XPFVYVUx
 
ja/wTW71hrZW5xA/5dhv16c8dtb8IduJr7Yiv+hWtG+WfMhDKL4qLBLT+Gor
 
84vuKYqviq8KBVB8VXw11L7iq8Iqoviq+GqofcVXhVVE8VXx1VD7iq8Kq4ji
 
q+KrofYVXxVWEcVXxVdD7Su+Kqwiiq+Kr4baV3xVWEUUXy2fr/RHM2bA8Ws+
 
Md4bj5NtWFZOO/zg8RPOfDbk3SCv8Sxo/ez43xxeWZuH77IvCoVZoN+mvJD5
 
QHNONQelWMaciM+1z7h8xdgBs45fxryx1tTJMl+Xuf+oWWYfEO8oRyyCr7LP
 
PD9tMC+o1whfyFfLzr1JX2V+UXkLn/tpaJ8JfYs53nzOXitoYx8KhY1APKxz
 
m7ndMkcoedKte9Dm8FwWsu6BHDNrjnX4J/3xka/kK/OLkjPHa5oUU7eVgIPT
 
t5/roe8dx7QJfayVZ5cBYxUyD6vPwiz5+hJZZ9dzcY0+Z6Lq4xTmxa5du8bq
 
8/mcvvWtbx3Ljw4WVedqCNTZsVYquUppF+2cJVdBC3IXYBciJ17m8eSzrOkC
 
jAdeBLKuBr+ROdeVa5ED5TQ4hBjAWfPvbBbcb/okdTf6bKjGR4uhuHba3tbK
 
4JqH6owUChshazEM5R6Bx8CQHrPMZ8ycgYA2Z+2ujcBYYdxnW5N/87rgYXTe
 
RcqPeW45t+WhzFm8bFk2f4/+MAfjvFxJ+7k+ZdWhawQ571TNicKsyJwJPGNt
 
LPJQPpll2Ejbui2ZP3MeHcJ5X1sW4JozJruN6d4TGW6WdojMiUB/K7e6j/Ww
 
bN+y6vOljJTvZ+nvodwPPkt8zjX6f+qL/lahsBGGnpEhe8ky1s2mIWt9bVUb
 
JtnWMxfqVoP+zRzRqXsmhyV/LsuGZXvS5pfz2Kwwl2OeQ77lWrPu2rz5hQrb
 
F8lX5lX3+XFctWOa12WuPz/wwAP9+8w9Pst8P4l7W05IuSvH6FYjf0+0cpVc
 
uVG990Wh5RjbM+v9buVHof7u92kDbfMOFQobwXHRPi/tmG25bRlox7JIDpsV
 
0+SV/GyR8lWhUCgUCoVCoVAoFAqFQqFQKBQKhUKhUCgUCoVCoVAoFAqFQmF9
 
8f8AX55fDA==
 
"], {{0, 241.}, {300., 0}}, {0, 255},
 
ColorFunction->RGBColor,
 
ImageResolution->72],
 
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
 
Selectable->False],
 
DefaultBaseStyle->"ImageGraphics",
 
ImageSize->{50.24609375, Automatic},
 
ImageSizeRaw->{300., 241.},
 
PlotRange->{{0, 300.}, {0, 241.}}]), !(*
 
GraphicsBox[
 
TagBox[RasterBox[CompressedData["
 
1:eJzt3Qm8beX4B/DbgKIoU2ggpUJEaTQ0q0SaLkLRPFHppoSkLs1FkwZCs1IK
 
GUJxRUJlHlKaKaXRECrr3/f1f1m2fc7d57TPXuvd+/l9Puuee/a4zlrv+7zP
 
83t+z/Muvs3um+4w57Rp02bM88g/m269z5p77rn1vpst8Mgv03ebsfOOu22/
 
3Qa77bX9jtvvuco2cz3y4FmPHPPMMW3a3I/8rAKBQCAQCAQCgUAgEAgEAoFA
 
IBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAI
 
BAKBQCAQCAQCgUAgEAgEAoFAIBAIBAJF4i9/+Uv1u9/9rrr77rubPpVAINAi
 
3HvvvdWFF15YzZgxo/rsZz9b/f3vf2/6lAKBQAvAFnzta1+rXv3qV1cLLrhg
 
tf/++ydfIhAIBG6//fbqPe95T/XEJz6xWnbZZavPfOYz1cMPP9z0aQUCgRbg
 
sssuq9ZZZ51qjjnmqLbccsvquuuua/qUAoFAC8B3+MAHPlA9/elPr5Zeeunq
 
lFNOqf72t781fVqBQKBh4BjEEssvv3z1tKc9LcUYt9xyS9OnFQgEWoCf//zn
 
1dve9rZq3nnnrdZcc83qm9/8ZtOnVCT++Mc/Vtdcc011xx13NH0qgUBfcP/9
 
91cf+9jHqiWWWKJ61rOeVc2cOTPG9yQgL3zqqacm3ubkk08O7UigePzzn/9M
 
+cxXvvKV1eMf//jq7W9/e/IlHnrooaZPrTj8/ve/r3bbbbfE7a6++urVpZde
 
mq5vIFAqcJJ77LFH9djHPrZ64QtfWJ177rlNn1Kx+Otf/1p9/OMfrxZffPHq
 
KU95SrXvvvum6xsIlAicJHvwspe9rFpkkUWq973vfdX111/f9GkVjd/+9rfV
 
O97xjmq++earXvKSl1TnnXde+GKB4sDv/c53vlO97nWvq+aff/4UM//iF7+I
 
sfwoQUsmXnvFK15RzTPPPInz/c1vftP0aQUCE8Kdd96Z/AW24dnPfnbi08I2
 
9Ad33XVX9ZGPfCRdV8fRRx8dGvURhDW48ygB1rivfvWr1WqrrZbWuLe+9a3V
 
z372s6ZPa6jAF+OTPeYxj0l61O9+97tNn1JgQLAW/OpXv6q+/OUvV6effnpa
 
ez/xiU9Un//85xP3b/1oc82jGHmXXXZJMTI91Pnnn189+OCDTZ/WUAFXKddJ
 
h/rkJz85cZWRMx5u/OMf/0ixJHtgzV1ppZWq5z73udUznvGMpBvAR73pTW+q
 
9t5776RFpD/0njbhgQceSOdP64Bjf+973xsc+xThxhtvrHbfffdU6/bSl740
 
1cqHHR5OuK9ql7bffvtkE+acc850zD333MmHdMw111wp9+0xtY9y4XLgbRoT
 
P/rRj6rNNtssnWPWSZYSF5WIWbNmVWuvvXbKH1tTfv3rXzd9ShNCSXFzk/jl
 
L39Zbb311kl/zAYstNBC1YYbbljttddeqUeCg45ggw02SL7EtGnTqsc97nHV
 
Flts0ZrYnvb3oIMOSv6OGqwDDjggxUKBqcOf//zn6kMf+lD1hCc8IflsJ510
 
Uqtr3tgCPqZxce2111aXX355Gr/GjsfDVvwv6GaPPPLIauGFF04+wote9KLq
 
gx/8YHXllVf+Fy993333Vd///veTz87HYCO855hjjmk8znBfL7nkkupVr3pV
 
Oi95zauuuqrRcxoVuO70qdaLN7zhDdVPfvKTpk/pfyB3pZ/gxRdfXH30ox+t
 
3v3ud1dbbbVVWu/e+MY3pnXQ4+zFn/70p6ZPt1W44oor0nUyr57znOdUhx56
 
6Lhck7gTH8XHYE9wEvyPJoFjkM9cYIEFUn3mUUcd1aq4Z5hhfTnssMOSz2a9
 
cO3xl20Bv8Ba9/73vz/ltJxnjpXz4XePv+Y1r6mOO+640HT8P+Qhjj322OqZ
 
z3zmhNbdH/7wh+m13rPYYoslv7KpPkx8h6985SvVKquskngH/EP4DoPFD37w
 
g2qTTTZJPIS1xprTBl/dObAN2267bVo3jFd1OGIhvMnGG2+cfE6/exznZjzj
 
4NWpjjr4XHKBbCgtERsrjpgd+GBiEj6E977rXe9qzC+7+eab0/c7/2WWWSbl
 
3ZqOd0YNeAjXHW9tHu65557VDTfc0PRpJV/XXH/qU5+a5j7/WI2eOhJ8/I9/
 
/OPEsct5vfnNb07cFRtCj8+Pvueee5r+ExoFnQOO0TVZcskl0z3uFd/4xjdS
 
3Om9r3/969O1HjT4LOecc04al2ILHKoxERg8rDViPHlluohPf/rTjWpW8aSf
 
+tSnqqWWWiqNUef04Q9/OI35Tv2O3+W+rJVsiTVPLEJnN8qocw8rr7xy0kT1
 
ClyleM17l1tuuaRDGjRwz/JqdJJqAtzP6DfbHNS8rLfeeinOsO40yUupxdtu
 
u+2S34A7NfdvvfXWMV8vFhEnbbrppilOpa+z3tx2220DPOt2gT5gjTXWSHOc
 
XkA+u1d02ofPfe5z6fFB6bHFM0cccUTilaxZYqPQ8DULsam4E58ljsdt4Qeb
 
gLgh57Pk2/gSsxuTzlU+LsfNfAg5j1EFnwqv5BquuOKK1UUXXdTze3Ney3tx
 
PeI5XMBZZ52VrvEXv/jF5OvLI/TbXvBb2TL7WFgf1l133erb3/523z4/MHmI
 
M6dPn558iI022ihx2U3gjDPOSHyDee48rr766p7eVx/Xiy66aOLeRxU4Wv55
 
vhYnnHBCT/65+Ynj8R7vxQ/rL/T1r3892WxcgL4L/DvridoN98drcIeP1lbw
 
HWl7fY/48sQTT0x95ALNQ9xvbKjttA7LfTbhQxjL/EraX/y1PGwvwE/gKo1r
 
eygdcsghI5srpxujd6KbFMPjnT02O/ALdtxxx3Tt5Q3oFtkMdX377bdf8kVc
 
W3Ecff4KK6yQ/BRzGleM22Sb8MPZv+gVdU7Sd4sRoxd1u2AcWHdyvvN73/ve
 
QL8f3yj2ND6Ma/sa9MqV2hNFjoN9cP60U6OsmRJTWOtdj1VXXTVxfOPNV3Pa
 
ei2XmPMeuGrvMXfx2GILGkzaKbaBreDn4Yn4HPw344fOKuea/vCHP6T3zy4W
 
4TvstNNOyaY57y984QutyLUH/gM+hHot9bN5H8Ne8ub9/H5+C/uQ/Ydev79u
 
H+imrD+DPPe2gc/PRtKH0NFvvvnmyUbQqHf2f5DTpi+T63DtnvSkJyWdKh6j
 
E/x964jYgo+28847pzjwec97Xrpn2V7gsfAH7iHfgtZJLMKPyfYigx3nN9Kz
 
qCuW22aPAu0De7/PPvuk9RsHPlW1cj6Tb8AmZN2Lx4wTuUrz3FrUa2/BOidn
 
fKsvaXM/g6mGOciHUM+N62Mj+BHW9tNOOy3xwHqKffKTn0y9B3N9J99L/gJP
 
OF585l65b3IL5j1fw+fII7Ez9DS5TpQ+lw6Sro3dxnN+6UtfSj0daHB81/rr
 
r59ez6b4ve5zNHEEusOctTZk/1HsOl5+caJw7Y0J89mYEuPyWXIOS75dDGqe
 
67fdy54nxpLPyO+zlpkDow7XlJ/PRljTre38CbbAtX35y1+e1nm2w3PW7te+
 
9rXJt59ovZ5xo15CHQ+9xeGHH55qR/GaeiP73qyL9z24DH0O7XnF//AYW8LP
 
YdfYL/6O3Lv8tXyUe+zcvvWtb6XH88GeyMPqW4unrj83mQM3z38ZVf5qdnCf
 
1dFaA/QPcV8ejT4l+wquuTVLDGGd4U/SK1g7xKrAd6XBMI58/4EHHjhbjlL+
 
DUeWtdZqCJrKv7QFeQ2038kFF1yQekCI68VunTUs8gXWA/VvOKd+1OGwL+IW
 
85WPQscg/qOzkZvI9oI9z4d7x5astdZayX7JU8t1up/+r5e986Tp8Hg+vJ5W
 
4wUveEGyR/Xn8uF789Htsfpzvg+/2y2+CvwL6h/oa/P+I5PpEWGMGp/0fNZz
 
vog1K2sdfbYeNbhxPc5ALMp+yGF4Db+UT8Hn6PT7/C4eEjsbG7lWUZ/NUeYe
 
cAx0TmytNVCcJTdh7RV36QEj16PmCX+AR+Az9tNP7IT75xzyWHDPnQN9LBvl
 
3tXtVq+H91pHutXviZX4JXJyfMp86HXhqD+WD7GQ8ckG4WMD3SG3SScl14mb
 
xlv3On74GnwQvgI/RDzr2vNj+ZDuDZ9BLGxt41fU/RP+pLGLA+EXWx9w63xX
 
897apJex14lPrB1i12zLmq5LbhLsKy2TOIE/UK9pZU/ZCjbb4z/96U/TfRp0
 
3ZN7rQeFc8BFmsN8GOs2rf9EDnZGjT9OQ76r/pwxS6ehz6aemw62Ccdlb778
 
WP3wnM+zB8RNN9000OtSGujgxYjmHb9OjDdWvtHYM2/5GWeffXYam3yFnAOT
 
t8Jb4afcA+ubud6NC/I5+Ctcle+2DoiZ2Qzjia/qc8wBNVm5vlNvJFqeUeYl
 
XVfXha+OD2yivmoiEHu4h/KqtHHG10SPzCmyO/XH/d6ZK4HxOMjgKHuHa4xr
 
4uPLCaiFwDnX4TqKV41DNvktb3lL8vX5CtZ+foNxal7zb3vd/9M6iJ+i4fMZ
 
bEQ3/9Ljnve6bBv41KNYCyx3KH7ga9PKq2Vtu/4Qt2W8vPjFL26kFmxUMVk7
 
2PkeY44Ogn2gmcn1EGwC/9D9FUPgna0DYkDcgVya2FaOgu2gv5loXag5To/n
 
M+RcfYc+aTgLvgU9uPy6c/I6r6e541/rxUwDMCrI+0Ood2SXXatetelNgubS
 
OYd9mDhwALh53B0umD+efSfrgscc4qTOn2JLOQGH9/d68E9x2DgB842vr3+A
 
Ndrc19cNlyXes5eG+cpXwBXggcxZMZ98lHPvR47IZ/h7xTviwgsvvDDt3eF8
 
2a+6r4Avx1ewIc57VPYAYhfxv/IT8gNi7qZq7CaCsA+TAy5QbCYvZU7KJYvp
 
cTAO/rrHttlmm1Qv0/nT+mGNdXh/r4cYnraa1tX3iPXF/XxWcT6/lb4Sz8u3
 
5zPgGXwvnZw522TeOOddrKH0XWwZ7nyY4XqrXWCr2WljpjMObCvcHzn0sA8T
 
g3ojMXXO6RvvY8Xg9cPrcIJyNHVNSv4MdTUO4wjnn3l/j3mfXJE1qDNXVM9V
 
e697ahwef/zxKU9B39yGvRDxFuINuXLnqUbZ+Q1zfxHX3pogN0TjwL8q5e/l
 
48lJ80/lDwK9wTjHt8nTyFeLv/kPNKzjHfwK+gE5Gut/fvyd73xnek4+EIcl
 
tyh2d8gReYzmTU5z5syZyTbJXeT30zPlul/3UgwhjmljrkBvGPEPG8H2iYPE
 
Jm2wX/0GHkgsIabg29GTldRPhc+pP6D8FJ4p0DuMZ3aC3gX3QEco3h7v8Lpc
 
Wyv27nzOfMYpiOdxhvIJ/G+P5bhA3Gruq33I76VplTdjH/xsey9hNkJsJLdu
 
3uBKnXMp62qvwDfx4/iG8kTiq5Jyc9l/cJxyyilNn05gksB/mWPiDH5FCbX5
 
9FN4GNqLvG8jveUwAQfM3/N3qj9o0x4FvYCmBm8S/kPZ4G+IdfAYNIpTqcXt
 
F/hEan30JcCnlLJn+URqDPmDcru0pW3XOnTDmWeemepwgn8oG2IM/QRKsg8g
 
JqOFkJuR/2vjPmF18Afw+OJy523+yGP5P64fJ6WmFZ8yDP1vsj5KHmyUewKW
 
DuNW7zHxRUn2AcwjeVfa78yntrUHgDyl/LH58vznPz/VL4nNzSGP0wrI29oT
 
kQ0pIc4bD1n/QHsXNfnlosT4Yizwx/VFsK9Gt0NuRu0emzjo/Iw5ryYu1zvn
 
HHT98Dg7LWchV1Xyvcj2IfyH8iH/aXyqsei1r1PbICdkHBqP9CT1Qw4ga0To
 
CPCxfP1B7sfF3+Y3sA+5J4OcZT7kZHCRamC9ho3w95SqE832AYfMNgfKRd0+
 
tGEfvskAZ6meJGu92AI9Seix9RZRi+b3rB/TewlvNigbQT+ee1nQsKpjr4M/
 
QzuvH07WtNJ3lHo/+GnsoOtNgxMoF8PgP6jVUNdovTK35DT49DSHajf0UfW7
 
XkL0iP5eNkPt6SBQtw90cd1yErgR9S16Knkd7Rq+skTIyfKXwj6Uj2wf1GBN
 
pp9UG0AfRW+Y/XP60c46Jmu0vjV6JHqNmINf38+a8bE40E77kHtk1A9/g/4Y
 
+ml4ndxMqfuWh/8wPMj2Qfxbao8m/AMNOV2luSVn223e05XSnatNxQfusMMO
 
qddSHbPLf+T+3PTOuE46WDyB2lh5VnpOtRP1+jEaoaxjt8+E/eW8rn6o41Zv
 
QfOlzkZ9fal7lmf+IexD2TCu1XPQGamPbLuOYCx0sw/dcp5sxtFHH/3v19Vj
 
KvlS9XO53zFfX88J+uD6oV8OTlHti/mMM1BHI0+sJtZ1pEWlMc48Q90+0BSq
 
p/W6+iGuYBu8Rj/Vyy+/vChNdR1hH4YD1rhsH+TeS/Vn+eZym2oyzC9/i17X
 
et2YZ8YrLkIMYg7La6hr9bdbo8UiNJk4wdwH2fjWH03/i/ohhsm947sdeW8I
 
NiP3OqzHF7Pr2ep5PRvbXgszHsI+DAfq/kPJ+gd+gX7NxmPev9aabC8ePXNp
 
seUy5DD0zFL/iW/J/fLxAUcddVSa/9Zw2iXaHlyA95rbeAs9NNgXdbBsCY5g
 
1113rWbMmPHvQw2t3tvqRHKMUbcP8hP2huB72PtH/ZXPEnfoycv2sC8+p1S+
 
OOzDcKDuP5RsH9Soihv0S84aJOt4XQfh99xz3RzEPeAJcv9n+yLop+1z9JrQ
 
V1WfTvkPfDz/Qh8ueUj6Ru/F1+Ah5CPy4Zp29tKp2wexhXoR11qPPofPEtt4
 
HZthXrFlYqYS9dZhH4YHmZ+0LtpboVTQ8Vr/zUHrvtyEvhj5wEvy23OMjweg
 
mTA3M3Ieod9xf90+qNvu5EQz2BW1GeIaNo7/c+211/b1XAaBsA/DAbzewQcf
 
nNZVvjOfuER08pM4w87+czgG6z99kt4lXidHj4OcatT5SXY47xvUDeq07DPl
 
tXJKJdrssA/DgXp8oT9MCb2Ru8G6q7dWji/Gym/yDcxN+QUxhziDnzHVPnxn
 
frO+v01Gzp2q6eRr5J4c9qcqDWEfhgPy+HJ17IOejvJ6JaJX/QOwEfbqy3tW
 
4gmnumd+Pb6wD6le4vyC+uExMRL+gd1y6H1TYv8H+g7jKexD2bBuWj9pCeUE
 
cW8lgi1Q8ygvYV6xebkvZae+SY86eQZabDok43eq5yC+M+8JpmcKG+B61w/x
 
nbpvc8q52b+wl33O2wbXXf8o+SJ9kfUMDZQJ+j/xuPFozpSq15N/MM/lKMx5
 
+8vjHXF71uW8Z4ie11637LLLJv5Pz4VBzMEjjjgi2eBuWof6786JvsIet86V
 
3tPf4T6VopViH+R+2Do86yD4ncDUwH4K9tuQv5DH10+qRNTrN9k6OgKagqx/
 
UK/lEBPjAcRTYhG9LzprKacC5oj1VE9Ge0jbv4Sugp1Sc+539Vhqz/Eocp5s
 
nn2x1Ws4T7xJKTaCVlz9W+x/UTayfTCvStY/sA/2de51/3gaJRonfaEHATpK
 
+k08xKxZsxLPg8Pzu1omv7MJajjqvWhzH0f5Fn6PWo8SEPtvDgeGxT7gH4zJ
 
8fYQE9/rBaHmggZKrUnb984QG9FsiJvoN821EvbXozPDPYR9KBt1+7DVVlul
 
OLdE8LvpGDtzAvWD9oEWMu/5WwLkn+VG7QmEvxCD+Dvavt+HPAyNelvsQ5O9
 
R0sGvQP9f2ctYwmw9uMO2IVhvvdsttoSfJ81Wd1om+vo3Bd1rosttliqYbFX
 
o7ipqUNsZ5zT/hkvwzxW+g21jXoq5X4k3XQ7bYR7LBerR4LcQIkaol7BV2Aj
 
5Gxxq+YdvXjb9gRyT+TLjSm8sDwtjYmYTq1LU4c9ptXq0f/RApbaw6AJ8Lvp
 
+UrzH6wL6inwjHKU9gkcdrDd8hvqT+2jrH9mG2q32AX6EfljvWjxPLmHZr2e
 
Xe5W3sjP8Y6xXuNxeTY/O49u/cDza+vvF+/gqQK9oUR+Ukxubxm5dXqoXIc5
 
7DAP8SfsIS5CflRNaRMcK58GT0pfomcfP07+WO2beZh7hrMLfpdvplPVE2OP
 
PfZImhu2zk+9ANXL2C+a7lWe2p7TnpPb9Zzcu8fzHtT0LfwpP2lMPd7t8Bqf
 
4bN8pt4+pfZQbAIl2odLL700+axZi4i/aztf1y/Qr9GGizHkNHARg9rXO9e2
 
5r3A2ARxhP191L2IJ3AktKA0ubvsskviH9gH/S74ePwdGhv+H027n3K2eAE1
 
rfZFo/vgj3jO35afy/3ArA8+x7n4/3h7AHiNz/BZPrON+9K3GaXZB2PTekAD
 
RRNgbdE3YZQgzrBu0lvRfHRq2vq9b5j36p+jlza9hmsuvplvvvmSf4BjYCPY
 
A7rJvEcgXpCv4Hn7eejvVep+Hk1gvHvW616u3cZA53gYb3yUZB+MUWMsxxXq
 
nPDSo+I7ZLiXbIR9O3G09fvOVtBa8fnNVf40/0p/f71sOmvex/sOcYt1V09t
 
vr1ac3bBfFf7Kn+p1w1fwbmwB519cWjX6UW9Xl17yT3zBgU21Lw0tv3kX+Gi
 
+Y58IHuieG4ih3o5WkDxoN+NG5y+tZXGxmN+51/Ve7XS7MlbsA/sRFvtAxtg
 
D1uxN96JTtq4DX/xX3PZvVUXbl8uWm2+BV9fLQcff9VVV032H6dpHo9lUz2u
 
5oOum23B7dhLCCcqTvDT7+IaNWdyhsbvWOuP8axvn/Pg78kfTHWtbMlgB/Q1
 
pkUSk6kRwMvgavjNuBo1/56byKGWVv5GDsLvdDQ+x9xXf+AxHA1tv9y0vWLk
 
yLyG74ffZef5j8YPG9YmTYlxa43S4xnnYC/NNnD3TcN6zfbj9eiZxV25R651
 
Xo0JX8tjfqr/sN+5eV3nNX2OtYHNNYflIPTANC7wCjTe/Ae9hPTc41f06rep
 
G8FT8CHUmgxqT6ISYV03Z9niXmsF+nUYO/o78wv1YbMHXc4/GQf6OVtn+BHi
 
2rPPPjv1bzVu+KVTaS/yZ+PE2VBrkjFb/07rDhuhJqEUncZUw3WwrqhZdR+t
 
7+qirAU0VXpi4PutD+a4cec+Wxfqvj5NprXJe3GNmd8xn+UO6CHpBibDH7iP
 
+nfKLbJZ1sNh1qs8Gug9YHzLtfAFHXgdeydYA/JjU3H4HtwyP8Ph3uOYjCvj
 
xrhwZM6Jptfr+JgzZ85MvoW1SvyDZ+6XveCDinNcF/ko49FYtV8eX0svV3F1
 
W3yZtkA8qreCPpruofXeOOID8AFz7MXWsgV8R3taWQtyDXz29dWX8iP5GLhG
 
vOIJJ5yQ8qfjxSO9gr8hD+l7+X80lfikwP/CfXNt8uEeWaPNufrj/T7YJtwy
 
n4B/Kb7gR7AH8tP0Rnqs4P2MI75G1p+wG7ipvPcLH/Scc85Jn2dN4atOZv7i
 
zHyneEgvSHYJv5D3pzCW6DuNZRxL8A3/gX7bOL98f/S9dT/G0kOwseyJa5rv
 
uXtofXcf6AWsW3w087mfugpjg65SzxvnSysxCpq2UsEm6SkgPhVvmKPyzPx7
 
nKaaY/vL07Ooz+BLGINZj8aP1btATMrvsdaLK+mU2IscG4wFz9Fu8o35scYr
 
m8BeqVNkn/RbYiusjewGO2Hs1uufRxWur7yEmMH9wD+pF+/MH3QCH06n5Lri
 
FcQh2T+gE5jKWhZ8kbpZ95Xt14/IPgGBdiHXQvMHzHdrN/++G/gd1imxhXhW
 
zwRrQI4lM7fBXpjXeCjxLn0jrR9uqltOzbjgr+Q+0vS4/Bbv4x+zT/hz9meh
 
hRb6tw5PHM3/GfVYgx1gk8UDuAKcYy86Kfde3iHHJO6ZGGJQMB70xnIvcaVy
 
LqOWn247+Ac4SOsH30Fc2ksuwLqNe8Bl6S+Iy1b7guvmS2R7QVcrp0bjaH77
 
/DqfiG+wzx0dgzFqPaG5wX/Vx4qeL+yWeYA3s+axIzgKObhRBk6Bb8fnUtPp
 
GvXqV7mm1gTX3h488lmDsrfiQzGN9cX4w20FV9kuyEvgoqw78qyT1R9meyFX
 
zr8wb+VraRPEuHxIvq+YwR48+BWw/vMDPJfrlZ3DWOsIHo4uSoxjTMu/68U0
 
ylyEOSVOYI/xkvi+2cUWGe6DmNC1tD64toOs4aCVxl9lrtJaYS0INA/8AI6b
 
X2oe8y17HVfjIdfw8RPEwXIR6q7pOvCZYmXjkg2QK+PfGtvyI/yR2a1fdNV8
 
DDbNuYthRln/ID7DHbCxYjQ+Wq89b9jV3KvTe3GWg67xUutpD2Tnj1eSoxr1
 
mLFp5HyYNUOdHRs+lX66cYgHpenM38NG+F5zHN8pb9pLvzR2Jefg2BXx0Shz
 
W3gh/A0f3b3kn/Vq5/keeCT2QZ0XHnrQ9sE4yHVmxoF8at7rPDB4mF/6peME
 
cEP2b6NXHvS4wDHIyRmbchTihF7Xjbwnk/dac+jGRxV1fnKie4DJK9LKTuYe
 
9BPyV+LbXPeJN404oxlYx2mkjCU9iOQzm9jrQm7CmMxzHHfRK/ik8njei9/C
 
eYwq2AfaMflNvK2cEn3B7CAG4S/kvf7UVzW15ypbICdOM+9vwJmWur9jyTAm
 
zCV6GL65+0BH0wTkLenzJuMDGMfGcxN5uTZCnxP5ZPcU14dz5KOP5Qt4XH5R
 
vzBxP+2LGKXJPU/EGbhV+S55bLr+tvXNG3YYR2r31OzIJbgfTflxchf6tWcf
 
gC6/F9/Wa9Qoy3N6r88Y9bUGv4MHzvt64nzpH3Pf/qx/9385A3vWyCfKd4gx
 
2Wc+WdOQA8Njy4urz9X/JzAYiEntRSDPrdZCTqzJ2ibcmPxJrhXGT/aSp5RL
 
VScsH2ouqCOJPmH/ihvponO8kHVmrpV4Xgzi/3I//Hg1efwN8b5x0Ya9f9kv
 
/aj4t+4vLkUtQGDqIXdIa8A207zr19GkXg3vbjznfgJqWWn/ZweaHjYh12YY
 
74PYF6/tyL1iaE/Ur7imcsDsBG6CvsD/cYC5TywfUm+4Nu11woeQrzVO6Srl
 
qkrZo6RU0NipwWKT9efQM6Hp2gXjmY3Sw8RcN1bx8OPtSyAe9Xfwi41x44cG
 
r+17Xw0KrptcL1+B74DfoUk113J9Ha2aOMRaoea7bf18+ZC5vwf7L68RNfxT
 
C/UPehzLWeCxrMFt0KDU+8ThyWiz1WdefPHFya80VvDz6rz4FnTctJPWPraO
 
Nkp9YeC/QUeCf8QBq2ORo2JXHccdd1yquVHn3YaYohtoZMRCeV8dY6SEvQRL
 
hDFgLwJ+PL+TZrEfOsl+gT+Jb6ftMe/FxdYONcriDz4Frm369OlpvOT+NuIR
 
vGQb7Fyg/5DPUs/Dt1Q3PKj9k0cJ+AUc8FprrZXmFK1h23w1sYF5jovSpyb3
 
QBM/sBVyb7m2m4/BRvA5abzaZOcC/YVcKx+Cxle+U81wW/2dUqHGXw8v+Ypc
 
Q9vGWN054d/5w3wF2id8BJvGJoiL+D54STEzzUbT/Elg6kGPry4Yf6JGQw42
 
/MX+wJyTE1enYA3mw7e1J3UGfwcHqT+UnJzYAh+vpgAPqWfnKNdijRqMYX22
 
8xim4YpcVX+An9LDmm9uPZ41a1ZRtjfv0WSM+FnSuQf6B2uaegD8mbyLNa+N
 
PnBJyP279I2UzxLbj3oflUCZyHlwa5x8J024tS8wOeDs8v4xrqcai+jDFigZ
 
ajP0EKHdoedQFzDKPYEeDehj9PvESdLa4vPiWgZKR+7RzT4Y05G7mjj4CPZb
 
VO+kBsv1dF0DgdIhX6Vfhb1E25ajLwU0h3wH+SC9FejkQncWGBbwGaIWY3Jg
 
X+kb9KrHO+j1qu4iEAgE9OjS/1V9XvRMCQQCGfwuvcHVNapb0ve1yV5AgUCg
 
PdDbQb81WmQ1LfoPRj4zEAjoLas+kw5K7ZJe4d32sQsEAqMHHCRduj3tNtlk
 
k9RzMBAIBEC+R320eiZ1TZHPDAQCdeAacJSx/3EgEAgEAoFAIBAIBAKBQCAQ
 
CAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQC
 
gUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAg
 
EAgEAoFAoB/4PxA7QG8=
 
"], {{0, 166.}, {264., 0}}, {0, 255},
 
ColorFunction->RGBColor,
 
ImageResolution->72],
 
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
 
Selectable->False],
 
DefaultBaseStyle->"ImageGraphics",
 
ImageSize->Automatic,
 
ImageSizeRaw->{264., 166.},
 
PlotRange->{{0, 264.}, {0, 166.}}]), !(*
 
GraphicsBox[
 
TagBox[RasterBox[CompressedData["
 
1:eJztnQmYjWXYx7v6vuorJTshoexLKAllDW2EslQSSVJISiqSJUKJECJlS6Xs
 
S7SQLcouCtkiChUVJS3P53ef65nrOM6MMTO8c8z/d10nMufMeZ/33P/nXt/z
 
5nvgsfoPnXvOOec88X/H/lO/eaeqHTo0f+bODMf+p0G7J1q3atfywVvaPdmy
 
VcsO1z/wP8f+ccSxx3fHHv977OGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh
 
hBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh
 
hBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQggh
 
hBBCCCGEEEIIIYSIEf7777+4R1o+BhEsQdvAmX5/3ufo0aPu999/dz/99JM9
 
Dhw44I4cOeL+/fffeF/3zz//uD///NP99ddfCT6Pn/Ecfh+vSegYfvvtt7hj
 
OHjwoL1OWkwb8Dn//fff7tChQ+7nn3+Os0NsLD674fn8HNtJCF6P/SVkqwnZ
 
YEL2nRx4T47rhx9+cF988YV76623XNeuXd0zzzzj+vfv7z766CO3ZcsWO6ZI
 
HbD27777zs2ZM8ctW7bMnhMNjp21LF261M2bN89eE3kMhw8fdrt27XKff/65
 
GzFihOvcubN79tln3cCBA91nn33mvv/+eztOcXYSbofLly9348ePdz169DAb
 
eOmll9ysWbPct99+a9oMt0P0snnzZjdjxgy3evVqs8looL/du3e7+fPnuyVL
 
lrj9+/ef8P7omOdgp6NGjXLPPfecvf+AAQPcJ5984rZu3RpVB8ldN79z0aJF
 
7uGHH3a5cuVyl156qcuePbu77LLLXObMme1RuXJl0+aePXuO2ws4H2PHjnV5
 
8+Z19erVc19//XXU92EP4T3uuOMOV7p0aTdu3Li4n/H72O84h40aNXI5c+Z0
 
GTNmtPfPkSOHy5Qpkx3XfffdZ1r8448/Umz9InXg7XDx4sWuTZs2Ln/+/Pa5
 
8/ljB1myZHHZsmVzt912m/vggw/MXjz8vW/fvi59+vRmw/H5Afb4SZMmueuu
 
u87VrFnTLViw4Lj3x9fhH1q0aGE26HXAMaABjuGmm24ye//xxx9TxCfyvr/+
 
+qvtLxwTdn/NNde4hx56yA0bNsyNHj3adevWzVWvXt3OQ758+VyXLl3s/T3J
 
1SDH8Msvv7i3337b3pt1onf2Hn4ve9ETTzzhrr76apc1a1ZXrVo188vxxSQi
 
9sAGyH+IpdAY9o5O2rVr59544w2zg+eff95VrFjRNIH9YBc+JkquBnl/Yt0p
 
U6aYrfv3b926tRs+fLj5HvxhlSpVTI8FChQw/7x3795kr501sO/UrVvXfjfa
 
W7t27XHPwdaJG/v06WN7U9GiRd2rr75qPhuSq0HOy9y5c23tl19+uXvqqafc
 
zp07j3st70Xs0LhxY9Pogw8+aP5YnB1gGytWrHBNmzY1jd1///0WU4bHe8SX
 
2Fb79u3NVrEjXgPJ1SD2RXx6++23W7z16KOPuvXr1x/3WnRAHIr28EUlS5Z0
 
Q4cOjdNBUmB9+/btcy+//LL5OOx748aNUZ+LzyVG7tevn8uTJ4+75ZZbLG+E
 
5GiQdW3bts10x95DDEA+GA32yffee8+VLVvW1ahRw02dOjXJaxepB+yQOgH7
 
OnZYu3ZtqytEA3snJ+M5xEyvvfZaXB6TVA3yevbzXr162fuzD5BzRsP7oxde
 
eMF0EL4PJAXyWPJetHfVVVdZzplQnomGyFPvuusud+WVV7pXXnnF/j1Sgxs2
 
bDiunusf+NyFCxe6OnXqxGmQc/rxxx9bfFmiRAmLL+KD9aNPtPfuu++ads92
 
0kJfBjtctWqV+T7ioO7du8dbd/N6IxfBVtjvo2mQ/CqaDWKr5JLs416DvBcx
 
FnZdpEgR820JnXNvx8SOhQsXtn0gqWD/M2fOdOXLl7c4Fy0kBGtFA8TF5I3k
 
zZy/cA3iH1kX+0rkY8eOHaafm2++OU6D7EvvvPOOreXWW291X375ZZLXczbB
 
uebzwT9Qu+M8na1a9PtwrVq1zD8R65wqXoMXX3yx+TFqpNFskFhy5MiRZn9e
 
g9hvuG+k5pcQ+ILt27e7Tp06WX3iySefjLcOezLCtVO/fn33zTffnPQ17C+v
 
v/66xeP33HOP5W3+9xBHX3HFFe7OO+90DzzwwAmPZs2aWbxNLO01SMwwZMgQ
 
d8kll7h7773Xeg9pGXRGvEFtnpiL3IP+0PTp060Oxh58tmkR+2EfLl68uO3P
 
1CdOFa/B8847z3wZOoxmg/ha6g7UPL0GsUF0ie0SE6Lfk0EN0cfO2HVS7Za1
 
v/nmm3Y8DRs2tD0isa9Bb7yGnqHXILq86KKL7Peha/9gbf5PnkO8EE2DnJ/I
 
fk1awfeksSV6o+iO/OD888+3c8q5e+SRRyyfxjfy3LNFi16D5CLs0b7OcCp4
 
DZ577rlmS+RqnLPIB/+O78IGvQbxK/QAsNsmTZpYvHYyeA0x66m8Jhqsnd5D
 
7ty5LRZOjP7RDL1z9E8fD5/sNcj6brjhBtMoe7h/EGfw54cffmi9durLXoPU
 
WVg/fSB6f4mpdQY9u5TSENvwmX711Ve2t5Kr+L2sQoUK1o/iM8JusNOePXta
 
7Zpe1tnQn8F+Jk6caDZBLkNudjIibcBrkPOGjokbsLvIB7kXPQ5q++EapP9A
 
LkoslhhfRB9j8ODBcTWcyHmTxEKfm/yUz5UYIL5alMfXj7ABapj0B9iTk1MX
 
Dc8HOXfk5gnhfQUxMOculuF8sn5iiTFjxpj9ZciQwc4texlzIdTnyMGJ/8nZ
 
6cuQi1eqVMn2LvbNyJmRWIN8kBoLmqA2MXny5ASfz77D/oMNoAX+Pzl1UfwA
 
8zjFihVLVJ2Tz433pi7CzAB1EWLTpIAmfG+Q/jf+K6F9Nbx+xb5MfRaSo0Hy
 
G84/MXq5cuVsT4hv9sDXRQcNGuQaNGhgz41FP+BrxPR6mAvC/xMfMZNRqlQp
 
9/jjj1u9OlpvjPnBMmXKmA7RI+eS88DvitVc0dsVeVWhQoWs3o6tRIP1oTfs
 
jdiN2ih6TI4G2QOYjcEHXHvttTYrkpBdcWzEy9RD6JfT20sq2Do+lM+VPA1t
 
EVtGe39f/2VegN4kcyzElpDc/uCmTZus70rs1bZtW+tZRtqSryujV/wFnxWx
 
QDS9plY79DkfsQPngXoa5yxdunQ2d0HNAJtIqMaGztinmR8pWLCg6ZYYqmXL
 
ltZjJp/GplPrOYBony31Jvw+dQZyHPrj0T5b1o9e6SNjs9Qm8WPJ0aDvvT/9
 
9NNmg5xLdBGfDpiNIS4hfqRPTZ6VHFgTv4Ocg3olvXKOh2PlGPyMOXU69lv6
 
eJwnagZ+nSkxJ0P8wb/xIDZnnf5aDY6B96JvwewQPoM6bmQfw8d2xKipzSf4
 
nI88DlvD31144YV2LolD3n///ah2wxpYV/ha/Hwhc1133323aZA6BPE88RE2
 
mhpzRd9v4dgi5335vOgJ0DtmP2IekjoHz/N2yN+ZIWF2kjjsxhtvtNkySO6c
 
DL979uzZFu/z/lwrQP85UgfEGxMmTLBcgBoPx8IekBz8jAI+nXjY56Uc55o1
 
a2w/wk9TI+e42XuIGfiZx2sQDaONU9Wgnz3gPchxsaWOHTva3kC/n5klekbY
 
G/H39ddfb7WkcH/hr8lg5o08iRibzyXo+iHHxfkhbyPnoweG32MfIZagRhWt
 
DhV+/QB7Iv4tci38bn7O72U/5tygRXIq+sa8J/YR9F7EcWLj5FDETtQTsYNw
 
fIxJjwD/jn03b97caivsW+vWrbOZZmbIqP1hI8xO+poAr2WG61Q0yGfhNej9
 
G7ZDbwN/QlyIxrF16mXUdIgZiVfxl8x18u8pAevnM0YT1AL8jDh7DfGuv24B
 
jRIzcj4i1+X7O8TI8c27oUHq7vRgqI0y6+Lx+Q5z2pwD3h87RdfsC35+Hj/M
 
5xSZAxN/ca6I54jPyJlefPFFO9aUvs4kMfhrYLA7Pkf6OORwPucjhqIfG1/u
 
y/kgRscfsN8zO+JroZGv4bnUdVgvexvniveizsbnQg7NsQRxDvjM2WPw2WgD
 
/bDP4q8jj4e9mPNFvo+ds6eQ8/IaNIE98P/UjZkrC59pxB6Y80Ib2GhCGpw2
 
bZr5O+KP8L2A80pMjD9iH2NuFTvE/rBDrwtyMXwE/iGlYd/F75ETU/NgrXym
 
xKm8J/tQtFqk1xbPodcXX38BW2FvJo/Dh/OacPzsOn6XmBgbolaEnpilZ58j
 
zoqWL3l/Tn0Lm+WzwhbxD+wtfF7sxafbDv21n+S0rIP8ls+Q+Q2f8/G5n+wa
 
SK9BzgO2iHbZt8hD8IuRtVD+zvrIFanp8F7UWIl1qZ0TH2BfZ+I66PBeJ7ON
 
xHUcD7E3tuyvP4vvtayNdfTu3TturpEHdTtyIHwXWgqH1xBL0kMlJotvjtrP
 
hlPb57rYSH/hz6PPGZg3YT/wczW8P+cyPo2nJOwJ2BIP9qcg9lDeN/wYEgPP
 
ZX/Cf+C3sUPfR2UvPp12yDGyh1DTpGZMXEC/ij2cOgM5L34ssfg9C1vEDthT
 
2FuwS3wrcWjkWvw1cNSuyBmIY4jPiO/QM/0nfMbp+kx93kv8Qa+TWvcFF1xg
 
vo9aGj6GvTKxBG2HQb9/rOJrFsTv3g7xI9ghvho7RCsp9Z0EPufDb3GtG3ke
 
fo9YhhiC/Cep11n5fZlaOD7V+zfW9Nhjj1neG21uxsdV1NmJIdAA54DYhjiH
 
uJ+9PCXPAb6Jfib5KT6DvJfYDf9NvYRYRDactvB5NnUsej/eDtmbyTn8nF1S
 
7cLX+chhyPPpV5GzkIuR8zOPkVI5Q/j3DJBzE2Pi34jVyQOpDbDvRMsViV3p
 
YZHjeF9KnE/MxrEnZx7c146Yl6R+QpxJ7Mw+Qd7UoUMHi+uSOtMszg78nDv7
 
PzVV/50E6JKeAPZzKjULX2vAz+Br8U/kOfg+6kmtWrWya1tOx3f/+LoFvpX6
 
OJrH3qkxMGNBPT+apjhe6stowsfo5KnECcxvRYtrT3YOfN5Lfkt84c8BNUt6
 
bJ9++qm+c0QcBzbDnsz3YjAviE+k9ku/F3uhNpxQzO9rDeRTxIb4OWYFfK2B
 
OhY5X3Kuq04s4XMz+EJ8L3rEF1M7I/aNlivi96kVkR/7XJFjp5ZIjQxfm5hz
 
QCxPbYP6pO91omn6w9S7+bkQ0fC1V2po9EGpl2CH+AZqtdSFo9X/sUt6bdg9
 
vTdyHOyOejW1BnzQqdQaUmotaIqckNkFrqtmX2FNzDCiqWj7iu+lEj9Tn6dm
 
RV8RLdFzI36Oliv6c0Atkf4QdUpeR97L36nBJPX6AZH28PPnzN5RP0BLxGf0
 
NbAvX//335uKbTHbT60auyOvIr+i/sk8RdBzAMSEPif134tHPoafog8Zn6aI
 
a9lT6Av7uBY9UVdhXX5OxZ8DYnf6uz7vpcaDL+Y9VG8RScHX/9ES30+CttjX
 
0Rr1f2yLeR36Tvw7+sNnkgOuXLkyVdUa0Ao6QVNVq1Y1nbAe9hjqUswiRct7
 
iVnx//TNWRvaoq7CXBLxQrRzQCxPzx0fnJrOgYhNwmM6YjhqCvgR6qjs88R4
 
9PnIm6hJ0qON7BGnJsI1RW/Za4pjp29I/SVyrjv8HFBTYq3+HNCb5Bz4vJcY
 
nl5raj4HIjbxeRLfeUN9hfiU67Kpo5LzEbcS88UC/vs6mUeh5kSOiKbQEjUp
 
5t1Za7RckRySuJbZX3ypPwf0M8h7Y+UciNgFu6R3yMwX/g9bjO9amtSO79Uz
 
N8qsvO+REnczi0V9JVqu6GN05gA4B8Tm9CBj8RyI2MN/7zd9bfpdzMeHX5/i
 
6/PkVrGSC/lePT1SX3/Bt3HtALM05IqRvTx/Dsj/OAex/r0FInY4mQbJt/CT
 
5FbMp8UK/loO5t65XpW6KbkidVSu06HXHr6nSIMiKBLSoL/mm/kwbJdrrWKN
 
8HlaruPg+9vor3Ntfvh9VKRBERQJaZB8iNk2ao7kVeRLsYrPFZlrYR3UnMJn
 
fKRBERRpRYMnQxoUQSENhpAGRVBIgyGkQREU0mAIaVAEhTQYQhoUQSENhpAG
 
RVBIgyGkQREU0mAIaVAEhTQYQhoUQSENhpAGRVBIgyGkQREU0mAIaVAEhTQY
 
QhoUQSENhpAGRVBIgyGkQREU0mAIaVAEhTQYQhoUQSENhpAGRVBIgyGkQREU
 
0mAIaVAEhTQYQhoUQSENhpAGRVBIgyGkQREU0mAIaVAEhTQYQhoUQZHWNMia
 
uNdU5D2VpEERFKeiwfbt2wd8tEmHtXCvpd27d9u9dlmX7vkiUgMn0yA2261b
 
N5clSxa7n2aswfqOHDli9+PlHtcdO3a0+3tyP/ADBw7EPU8aFEFxsvsucf/a
 
UaNGmd0OGTIk4KNNPP6+idxbifvwcu8o7nPNGgsVKuS6du1qa/NIgyIoIjXY
 
smVLu1dt+M/xI/iM8PsUpWbI91jDhg0b3IgRI1zNmjVdhgwZ7L68NWrUcIMH
 
D7ZYNBxpUARFpAa5PyZxWyzeB9rnfNxnd8qUKa5JkyYue/bsLlOmTK5cuXKu
 
S5cudo/r8HvS+9ft2bPH9ejRQxoUgYCP477R3Iude0dzP/edO3eaPUfaa2qE
 
Y+R+wXv37nXz5893nTp1ckWKFLE9hT9btWrlFixY4I4ePXrc69Aevn3Xrl2m
 
2bp161rtqXXr1tKgOKOQ/02YMMEVLVrUYjbuVct9aqlhcN9MbDc1atHnfPjx
 
FStWmC8vX768S58+vbviiitcvXr13Pjx4+3nka9jTfv27TNtcn/h4sWLm2ZL
 
lCjh+vbt6w4fPhzQqkRaBJukdoEvqF+/vtkv/qB06dKud+/eZt/YMXlWatEi
 
x8LesXHjRrunbu3atV3mzJldjhw5XLVq1UyP27ZtO+54vWbx+6tXr3YDBw40
 
v0/8yf2x69SpY78rvFYjxJkEuyYGHTp0qKtatarVMLDr6tWru5EjR7pNmzaZ
 
3QeZK/r4keOcOnWq3WM+V65cLmPGjK5s2bIWh65atcrWEvm6Q4cOuc2bN7tx
 
48ZZ3MnasmXL5ipXruz69OnjtmzZEtCqhDge4rT169db/Z56Pr1B9NioUSM3
 
efJks390cCZ9Ynj8uGjRIosfCxYsGNdraNGihcXOkbXb8JxvxowZVvfNnTu3
 
abZMmTLW81y+fPkJmhUiaLB5cqLFixdbjaJw4cJmt/nz53dt27a12seZyBWj
 
xY+VKlWyvJWYmdiZnO/gwYMnvC5cs507d7Y1eM02a9bMzZkzx+pOQqRm8CPk
 
R+SKDRs2dHnz5rVcsVSpUq5Xr14W96GP05ErRsaP6I3YkUeVKlVc//79zSdH
 
y/nQ5Jo1a0yzFStWdOnSpbOcjxh09OjRyvlEzOFzxeHDh1vNI2fOnOaLyBuZ
 
o6E2gl5SIlf08SN99FmzZllvIU+ePHF1og4dOtjsS/i8p39duGapi/Iar1nq
 
ndu3b081dSUhkgJ9OOZPunfvbvlU1qxZzcbxkdOmTXM7duywuZqk2Hl4/EgM
 
TD5KzwAfVqBAAde0aVM3c+bME/oG0TRL/upzPjS7cuXKE/qDQsQqaAV/s2TJ
 
EtemTRvLr7B38jP+f+HChaecK6Ij+uJr1651gwYNspyPmQHiR/oO+Fr6J5HH
 
EZ7zMQfj6zT8Sc43d+5cO1YhzkbQzf79+61W2rhxY8sViU/JFbkugVwxMX1F
 
Py+HjyPn43f4ngGz1vT5wmPcaHWaChUqWJ+PfYCcb8yYMaZNxZ0iLYAvIs8a
 
NmyYzUTTr6Of4fuK5IoJ9RV5PfUTen34U3I+3zOINl+GX6NXOXbs2Lg+H715
 
ctN+/fpZPhiL865CJAf8DTkZWuJ6Q2ak8WXUbnxfkVlqnhOpD/zk1q1bbWaV
 
eWn8YWT8GK3PR5yKZulhcl3gsmXLLBcVIi2DFrluiDlMcsNixYod11ecN2+e
 
XZeR2FzR53zMY/M7yfno8xF3Mo/dvHlzN3v27OOutxJChPwW+dikSZPMD5Ir
 
okVyxZ49e1qdkh5dfLlieM5HXjlgwACbx6bX4HM++nzoWQgRP2iMXJFr8GvV
 
qmWxKf0MckXyR3JFfFh4fOrnscn5qK1QFyWu5VpAepPkfLxOCJF46CuuW7fO
 
vh+KXJGaDbUb6qkTJ060XJG+H7NjzAJMnz7dcj7vP8n5qNMsXbpUs51CJBE/
 
g0ovjz461yuiL65X5HsTyeuYu2a2k9481wH62U5+FivfpSFEasfPoFIrbdCg
 
gcuXL5/1BKnblCxZ0v7ObJrP+cgrhRApDzEls21cr0hfES0Se9LnY7aTPp96
 
7EKcfujpMYNKP5/vPIs2jy2EEEIIIYQQQgghhBBCCCGEEEIIIYQQZ5r/B8g5
 
hOY=
 
"], {{0, 154.}, {225., 0}}, {0, 255},
 
ColorFunction->RGBColor,
 
ImageResolution->72],
 
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
 
Selectable->False],
 
DefaultBaseStyle->"ImageGraphics",
 
ImageSizeRaw->{225., 154.},
 
PlotRange->{{0, 225.}, {0, 154.}}]), !(*
 
GraphicsBox[
 
TagBox[RasterBox[CompressedData["
 
1:eJztnNlTVEcUxq0kD3nMv5AHK0+aKisPqbJSpcYYNSkDgwhIUso6IpuyCIiI
 
IqKiiIiKiIAiKkgUBCSkBJXNpSRgAEXQAmRXFlcW15P+OlxqmEG8M1zmMkX/
 
qq7IDDCnv9vndN/Tp/trZ1+N+2ezZs3y/5L9o3EKWujn5xRi8xX7xtbH30Pr
 
4+a6zCfATevm973z5+xFe3bZsOsLdpFAIBAIBAKBwrx+/Zry8/PJb+NGcrCz
 
o+CgILrEvu/v61PbNIvi2bNnFBYaSr8sX05RUVGUde4c7Y2Opp8WL6aonTup
 
s6NDbRMthtTUVPrd0ZGKi4tpeGiI3r59y/tpSUkJaaytKfHoUa63YGJevnxJ
 
rs7OtG/vXnry5MmY9969e8f7ZdCmTdTQ0KCShZbDw4cPyXblSjp75gzvi/qc
 
OX2a3Fxc6ObNmypYZ1nU1daSxsqKcnJy6P379wbv5+XmktOaNVRWWqqCdZbF
 
8+fPaS3TKiU5mV69emXwfmpKCm0KCKDamhoVrLMsPnz4QNu3bSMvT0+6e/fu
 
mPcw3qzTaili+3Zqb29XyULLorW1lWu2ccMGqqqqosHBQWpqauJjjgsblypv
 
3x7X/wWGoG82NjbyMfvHRYto7pw59MP8+eTj7U3V1dV8PBfIB/0O/bOrq4s6
 
Ozv5/Bx+PTAwoLZpFknkjh1Uyubn6Kfw62Q2Hj148EBtsyyS8LAwunr1Kv//
 
rVu36FhiIjWKObpJCC2VQ2ipHEJL5RBaKofQUjmElsohtFQOoaVyCC2Vg2t5
 
5QoNDw/T9evXhZaTYHNICFmtWEE/L1lCfzg68rymWOcxDqyfpaWl0Ypff6WE
 
I0eopbmZ59l/Y7rGxcZSd3e32iZOe5CXRHzUurnRrqgoarh/n6+fIU/05s0b
 
6ujooINxceTm6kp5Fy9yzQWG3Ge6IW8e4O9PN27c4Gs9+rlzaApta2tr+c/6
 
+/nRP5WVXGcBUW9PD8WzvubO+mJ2djb19vZ+Mm8OjZETLi4q4r+HPtzM4gC0
 
nolgbMa6rbOTEx0+dIhaHz3i9RnG6AHN+/r6KO3kSXJeu5Z/7ZuB9UaY4yQf
 
P041NTVcV1P7lBRLsba2e9cuKiwspMEZto6BPgUNlFpPhKa4J8b2bTWA/2Rl
 
ZfF4pgvqp9C/mlm/AMeTkuhQfDxf99KltLSUTp44weOaOZBrh9x2KQnGzR0R
 
EdTW1jbm9ZSUFPL18eFrrcDLy4u+mT2bTjB7decs6enpFBgQQP/euaO4beMh
 
1w657VKSQDZXwXNHm959xr3zZnajJgCs9/Cgb+fOpWVLl1J5efmov51ic2/U
 
pd6ZAtvGQ64dctulJMZoGbZlC9mvWsXvedOIj6ihpRw71NJy4YIFvMYUczrp
 
Qq3uageHMVruj4nh9Wg21tY8NmHerYaWcuyQ2y4lwWfa2dpS9J49vC5XulDf
 
48Tmdrpaxu7fT48fP+ax397OjvsYYry5tZRjh9x2KQk+M3zrVu4rmMtIF/Jg
 
qEnT1xLjIubN+B4+hto0NbT8lB1y26UkxsRLqQ2I9xUVFWSj0XCf0bq7q6Ll
 
RHZM97FHagPAnDz+4EH6bt48XjuthpYT2WEpWr548YJ/RZ0a6ilX29urpiVs
 
QB5U3w41tBwaGuLPaPrPfIgteE/K7eD/Us4RzxjI6eIZA6+jJtVctZO6dgDU
 
zJVcu2Zgh9x2qQ3yunh+MNdz40TorsNZIkJL5RBaKofQUjmElsohtFQOoaVy
 
CC2Vo6ioiJKSkkZzh2qCXCZqkywNvh+nspLvEfX09KT6+nq1TaINvr7k6OBA
 
11jfxPOMJYB1EzyvIV+1MzKSjiYkTIt+uZX5OM6ZwDP2ltBQunfv3rR5PtRH
 
qqdycXLi+dburi6+L9mbaYr6Kv0zCswF6juwrx+1CMgPIN+CGgfYibwRch7T
 
Bd16Kqz1P2hs5HkB+DnyBZcvX6aVGg1ZW1lRQUGB2fYz4rPLysp4rSHWz3Ky
 
s0f3o2MNHff6yOHDPH9+/vx5vm9dTSaqp+pi9zt6927y0Gqp4NIlXqeBfHZQ
 
YCBfT0V7pgqcMxG6eTPfM13O9LxSXEzr162jbeHhfP8vbJTqvOqZr+NnsX6L
 
Nox3LsVUMlE9FfpdxtmzvE4IOUDU+UE3vD/AtP6L9U2clxGzbx+1661JT5an
 
T5/y+Iy/j3N4epid+Fxc2Mf/Z1YWtyuB/QzWgQB0xViEM2Y8Rvb5415M9f50
 
aJKbm8v9AutRj3TqqfDZ6APItUZGRPCxWzd/qPs3EDsxV0LMyszImPT5OIgp
 
6PsuTMMDsbF8PjteLQxew77puAMH/q/hZG2R6hCgN+5FBrMHa2ZJx45NaYzv
 
7++n/Lw8qqurG1NPNepTbN6BtT7YN9F9leqp4G+YQ8O/Ktjv4W8aC+IF5jsh
 
wcFUXVXF+9hE9UQGNZws7mA/tVTDia/IsaMOWf+MCiWBHbi3kk64j4nj+JRc
 
JP9Cf/b08OBrBdgfLse/MP7uYfEYaxF/Fxbyvm2MX+rWcGLcxBkKmLuhjdK9
 
Nsc5FNDTwKdGxm5TkOJZZmbmqH/1fMS/PhaPTQWfjTPi0k+d4vMmnNmlX6dl
 
CnLPo8O+ENQ/oG7pUz5lDJJ/YVxC3EUtpTSHkhuPTWKkH7a0tFBMTAw/+0jy
 
eVPO6DPmPDq0a6p8QIpnuE/+I3Oo7AsXKJjFNrnxeLKfLcUpU8/om27n0fF4
 
NjKHQl+4wObTxsbjyWKKJtP5PDrYPzTSDnPW+5qqiTiPzhBTNRHn0Rliqibi
 
PDpDTNVEnEdnyGQ0EefRGWKqJuI8OkMmowk0Rn4BuWc87yKXgfnITOuPuiih
 
yXTfu6UGQhOBQCAQCAQCgcAy+Q8sueNT
 
"], {{0, 88.}, {83., 0}}, {0, 255},
 
ColorFunction->RGBColor,
 
ImageResolution->72],
 
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
 
Selectable->False],
 
DefaultBaseStyle->"ImageGraphics",
 
ImageSize->{46.51171874999994, Automatic},
 
ImageSizeRaw->{83., 88.},
 
PlotRange->{{0, 83.}, {0, 88.}}]), !(*
 
GraphicsBox[
 
TagBox[RasterBox[CompressedData["
 
1:eJztnQeQlNUSheW9hwWlZBAByRJERZCMCBIkJwklIChpCZYEyUmyQgEqIDko
 
SVDJUJIRlAySg5KDkqMSldCPr6uuNU7N7hJ2mX+GPlXjlLszy/z/7dv39Olz
 
72Rs2Kpak/888cQTbePd/U+1Bh2Lt2nToHP1xHf/p2bLts2btoxoXK5lu4im
 
EW0KNvzv3R+WvftYfvfxv7sPMRgMBoPBYDAYDAaDwWAwGAwGg8FgMBgMjzXu
 
3Lkjt2/f1ueYeJ3B4FUQu1evXpVffvlFli5dKps3b5aLFy8GfO2tW7fk999/
 
l5UrV8r27dv1fQZDqIE43r9/v3z44Yfy1FNPSdGiRWXu3Ln6c39cvnxZxo8f
 
L+nTp5e6devKoUOHgvCJDYaHA7G9b98+admypcSJE0eSJUsmTZo0CRjPxPzY
 
sWMlderUUqtWLTl48GAQPrHB8HDwj/knn3xSXnjhBfnss880xn1hMW8IB7iY
 
b9WqlcSLF09Spkyp3KVEiRKyePFiuXnz5j+vtZg3hANczLdu3VqSJ08uFStW
 
lHfffVfjulGjRv+Ka4v58MXff/8t58+fl5MnT8qVK1eC/XFiFb4xnypVKmnX
 
rp3MmjVL8uXLJ9mzZ5fPP//8H45jMR9+YPzPnTsnq1atkkGDBkmXLl3ku+++
 
kyNHjsj169eD/fFiBf4x/9FHH+n1du/eXZ599lkpWbKkchxeZzEfPkCjZjy3
 
bdsmQ4cOVb0ufvz4+siYMaPqGAsWLJATJ078i9+GA/xjvmfPnnLjxg1Zs2aN
 
VK9eXfl948aNVcexmA99EOvk7wMHDsiUKVPkrbfeUq2OR+7cuaVYsWIa8wkT
 
JpQcOXJIt27dNBYuXLigvchwQKCYB3/88YdMnTpVcubMKdmyZdN1D64XXcy7
 
Pq3Be4CzHz9+XObPny8RERHy3HPPSeLEiTXWW7RoIStWrNA1fty4cVKuXDkd
 
Z2K/YMGCuhbs2LEjLLh+ZDHPz7n+Xr16SZo0aeTNN9/UXtWoUaMCxjyx/uef
 
f8quXbuUGx4+fFj++uuvYF2WwQeMJfUp49K1a1fN3wkSJNBc1qBBA/n+++91
 
7JyfhHV+z5498sknn2i8o22wDlSoUEGmTZumaz6vCVVEFvPAcZwaNWpo3Nev
 
X19/HyjmySFbt25VrYe1kTyyfPlyOX36tOX9IIEYZr1mXAYPHixFihSRp59+
 
WvN7lSpV5KuvvtK1O9D48F5yOuNP7+all16SRIkSSdq0aaVhw4aycOFC5fqB
 
+vVeA5/RtyaJKua57kuXLsnXX38tr7zyimTKlEkKFSqkHN8/5vmbeBiofTNk
 
yKD3J1euXNKnTx/18PB3DI8GjNu1a9d0XCdMmCDly5fX8UiRIoXy9X79+ulY
 
3YtXkNewRsybN0/H/Pnnn9e/Rd8SjWfdunX6e695Dl3dAt+As7HGnT17Vn8X
 
Vcy73/M+fs4aFzduXF0XA/F5Xnv06FEZOXKkciHWA/hi8eLFZcyYMbJ3714d
 
C0PsgHGGTx47dkxmz54t7733no5BkiRJlLO3adNGNm3apK+53xglp1ELTJo0
 
SSpVqqRrBbFfoEAB1bPhtP59+2ABzsEaBGdr2rSp9lhLlSqlHkoQXcwD7tHa
 
tWulZs2aGvN40aKqYeFE3ANqgbx582p+eeaZZ/T9jAXzgs9liDkQk2fOnJEf
 
fvhB2rdvr1zdaS/ojnAReM7D5mNigdyFpoG+ybiSC1lL0IGCyfW5B+Rycjp6
 
E/eA/EyfCQ8l3mHgfJVt27bV+QAX8YfjOJMnT5YXX3xR80a9evX0+ng/1+gf
 
w45L8u+jCbAW8j54z/vvv69+ZOP6Dw/uH2ND/h4wYIDmXWKdsaQOY8xOnToV
 
o9zD+c83btyo8wvemzRpUs391MSLFi3SNeFRcX13D37++WcZOHDgP/eA2qNq
 
1apat5D33T3g9dQx/Jy6kx5cIDCHyOvUQviIecZLT9zPmTNH8wv31r9/wXUT
 
2/R269Spo2MB3+E+9e7dW7Zs2aKf12t80OtwcYe+gn5ctmxZ1VbIu3il8Aii
 
wfO62Lq3juuzhlDXZs6cWceWvNqxY0dZv3699nhjC+4esO58+eWXqq+6e/DG
 
G29I//795ddff9WYDHQPnK4eXd7l98Qxz/A3+B25m7qe+tX1L/z/Df5d6gK4
 
funSpZVHkRvg+ujBcFBD9HDcEX44ffp0zSOMMbGGX6RTp06a8x/lXjbGlvw3
 
ceJEzatofKzp5NtPP/1U5yVaaEzB3QO09BkzZqg/jJzu7kGHDh2Ui1PDxvQ9
 
4N+Fozgtk/WkcOHCMmzYMOXz/v0LpyfQ74brc0/gglmzZtU6yPfzMa94P2sH
 
84G1kv1bj3MdQGyxZlKL4YNFE0Z7hDeyRuMRYUyCtWYyNuRVOBb6kC/XJzfC
 
CR7Ww+N7D6hB0RJ97wG8KjZi3RdcJzUw14mOSb3KdVLb078gt/vXNI7rM18Y
 
u2rVqim34nr4e3At5in3Cf8P/B/v25AhQ1TzDxVdOKbg+Cr8+eOPP1YNBh2B
 
9dVx9kBrazDgdP0NGzbomDmuny5dOuU/aCnkr/vNXdwDrhG+5H8P8MhwDx6l
 
Zup4FddJffzyyy/r2sZ1urlHHPvHKdfBnCT+mResAeyzhee/+uqrmieYx9Tf
 
PNMXYD7TS2S9DPf613evMlovnBAdAu8f/P2LL77QNdCL98FxfWKcXmaWLFmU
 
e6AjwT1+/PFH5frRfXY3h+ANw4cP1/WDvO6Ve+B7nXAsaho0XLQetCP6F8zV
 
QEADo19IToeb0c9q3ry57r+l/oXzo7US8+gD/C5cawDffgp8Fc2A2ox8iReA
 
e7l79+5IazMvwZfrs/bDgZm38G70TsY8ENd3PJg6/JtvvlGdG/7Aw4v3wF0n
 
fAWPBtfJHIfr41UiR/tyfebKb7/9pmsW8U4/Cy2IHOd0B9YI9Gf6iqwB5Avq
 
hlD2fQSC66fg42Ves1YSI2gE5AO039jmq7EBrgtNnDh/7bXXNHbhAvSKmA/8
 
znF98h/xQ+8XLwtaH7kTPgOH/+mnn3Q+ePEecJ3oSGhGcH3nVapcubLGtDtT
 
hNjG68e9gP+hOwXi6/yMOoi+GTEAXyQ+wgHOB7Z69WrVv+CHrOFwutq1a8vM
 
mTOVC3hxnO8HxDW6Ev0g1nJiGQ3vnXfe0ZggH8J7OnfurGMMZ4cXwRvoZ3ql
 
bokKjo8xlvSm4DnwcvYgomvye/I385/6l/GN6gwR5hFrGusd9QO1QKiDeGed
 
g7PT20T/Ig7gq3BYdEkvcvYHhetxUufR20S3I/aZ3/AfvHDEOhyW/Dh69Gi9
 
P16PdX8wZvSFWa/Qavr27at6D+MNZ8MLQsyjL9/LtcVmr+VRg3UanzY+DdZB
 
xpw6nnqeOR4u1+kPxh4tmvyFdgePY58WfIBaFX4A5wn1sXaf3z0YU9Y6eius
 
YeiRjxuoSdBm8ew6vko8hPI43w+o/1jbqc/wceFnQJcN13tAvcL1wefQZOjT
 
Piic9ycU92+yDjL/wzmvRwdf71Y43wOuD8+N03AfNM+7XEEtTA1k/jWDV+G0
 
GPoU1LbU61H1WIlj6lZqAPRrp3ni/UHzQtdy/jV8duZfM3gNxCMaHD5N9jdQ
 
x1OjRwa0LjyceFbRKulpuJ8vWbJEvR1oHmgf1EHU/HhAbK+KwUsgXvGjotPR
 
d6CXFajXRI7Hq8HeZOYHPgv24jtQG6DvsgcADcT17XgdvVzbq2LwCohlfATw
 
EXq27E9etmyZ5n/Hc4hnYhYNO0+ePKrlsq/T36fnzipye5fxctMDRgejr8ne
 
SPQx4/qGYIO8Tt8KXwX+Ifq26LPwFeKX2hTtnt4c84L4JafTw4Wz+2s1xDS9
 
Lnp7aEJuXzr9TXzM7rsljOsbggnilzxMjLK/Hl8lD/pxPNOv4Ywp8jcxS4+L
 
OTFixIgo96qwtwBeX6ZMGeX6+Dzg+pzVA9e370sxBBPEKByGM9Toz9CLZq8b
 
z/Rqydv4kuHl+EubNWumHizWBXylO3fuDHjWFhwI7g/Xd+cUoROxruBlCRff
 
jiF04fq0br+i2+vmv4+XvaD4NfEtuLO2mC+R7VXBt0qf051TBNfHn88+Latv
 
DaEANEjn04P3EMP4kfGgurO2AnF9eBFaDt50/C1wfOfjdv51+lr0AeA/PFP7
 
etXDani8QAxSjxLjnGPEXhV3tgtnbeFlwafrDzQh1grmDH0xt08BXxN8p0eP
 
HuoDwgOK35N9iuzhYA6E69nshtACMYx+Tz+WOHX70uHveBr896r4wu3RpYZm
 
3ya1LnyfeYPPm2d+xgMfFFqqV87tMhjc2ZnsS4fro/mwr873XF3fM5Odps9e
 
evzaxDrfNUG/AI83GhFnCrBXhb/H76mr2ctkNYDBK3D7p+EteHnQ5Yl7cj95
 
nHzu9mkRt3jV+W4JegP4GvC9+fN2eA/179tvv619YJ5ZOwwGLyHQWVvoO+y5
 
dWd2wmk4V4Q9XJwtwHyIDMQ9fh98PfhAObPIcr3Bi4Drs6+YPeTUo3jZ6Gc5
 
3wPnh8CB0H+i4unkfvQbfA9o/Hig+X+DwauA6+PjIc7h9M6/j97DvkzOZYgO
 
1MHUBej71MrseTEYQgVojnAcOA36Dpr9vbyHNQJ+RP+X/fgGQ6jAP37vNebd
 
PLnX9xgMXgH+BFeTcrbWt99+G+17qGM5qw2fGj1cPJ8GQ6jAdz+u4/PReevx
 
KLCvBe8nfB491GAIFbi9V/gt0dw5Hy8qHYbX4012Og8+/tj8XgGDITZA74o6
 
NH/+/LoHi7MDIzs3FI8+38Xy+uuva5+Ls2PNc2YINfh//zP7cvEjo2fC3cnt
 
PPMa4h0PA74b1gT8lgZDKAKtnrNBOC+fuMdT/8EHH+hZ/nhu+E48zhzErwwH
 
4sxQ/JoGQyiDfhX+Gc42h+O47yjivFD20rJHke8D4mw5/DkGQzjAeYo585i9
 
huR2PGfsq0LTIbfH5PeBGQwGg8FgMBgMBoPBYDAYDAZDbOP/R7aOxQ==
 
"], {{
 
           0, 72.}, {189., 0}}, {0, 255},
 
ColorFunction->RGBColor,
 
ImageResolution->72],
 
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
 
Selectable->False],
 
DefaultBaseStyle->"ImageGraphics",
 
ImageSize->Automatic,
 
ImageSizeRaw->{189., 72.},
 
PlotRange->{{0, 189.}, {0, 72.}}]), !(*
 
GraphicsBox[
 
TagBox[RasterBox[CompressedData["
 
1:eJzt3WWUXFWzBmDWd++P+/P7xx/cJbhDcHcI7iQQgiaQBJcEd3d3hwDB3Z3g
 
7u7uvm+efdfm9tdrMpaZ6dM99a7VkMx0ZvY5vWtX1Vtv1Zl+yIhB2/1riimm
 
GPU/E/8zaPCey44cOXjv9f498S8bDB+1w7DhQ7dddfjoocOGjlx0yH9N/OKQ
 
ia+3Jr7+e+IrBQKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCLSBv//+O/3+
 
++/phx9+SF9//XX68ssv01dffZW+//779Ntvv+XvBwKBnsEff/yR7WvChAnp
 
sssuS0ceeWQaM2ZMOuSQQ9IFF1yQHn300fTZZ59lmwzbCwQmD3zYm2++mc47
 
77y01VZbpaWWWirNPffcafbZZ08DBgxIiy++eNpoo43Scccdl5599tn0888/
 
N3rJgUDT4s8//8z2dthhh6WBAwdmW9tggw2yjzvhhBPS4Ycfnrbeeuu04IIL
 
pnnnnTftuuuu6emnn852GggEuo4vvvginXXWWWmRRRZJCy+8cDr44IPTI488
 
kj7//PP066+/pu+++y49//zz6bTTTkvLLbdc9n0HHHBAevfdd9Nff/3V6OUH
 
Ak0FPu6JJ55IgwYNSnPOOWe2t7feeit/vRbyNzZ46qmnprnmmistueSSafz4
 
8enHH39s0MoDgeYEPvLSSy9N88wzT1phhRXSww8/nDmStsCnPffcc2mzzTZL
 
c8wxRxo7dmz6+OOP+3jFgUBzg80ceuih2cdtu+22Oa9rD59++mk66qijss1t
 
ueWWHb4/EAj8J95+++00YsSI7Of233//9NFHH7X7fnU7flFOt8oqq6SXX365
 
j1YaCLQGXn/99TRs2LDMR+It+bH2oEZwzTXXpNlmmy0ts8wy6cUXX+yjlQYC
 
rQGx4U477ZT93EEHHdRhfib/u/jii7PNhZ8LBLoOsSSuEhe53XbbpTfeeKNd
 
jcknn3ySjjjiiBxbqtnhOAOBQOeB67/22mtzXU6seOedd05SY0IbRheGt2Sj
 
nYlFA4HAfwL//8ILL2Sfhbvcc889c47G7mr9nfrBe++9l0488cSc+6mN33bb
 
bZXXgLkGZ4V1iou9nDOhGQ00Et9++23WNPNz9F377bdfuv/++9MHH3yQ6+By
 
PFqv448/Pi299NJZG3bggQem999/P+9bdmtP06tUqfeAremLcIY4Hy655JKc
 
i6rlP/PMM/naqrTeQP8Bm2FfJ510Ulp++eXTAgsskHUpo0aNyrzK3nvvnePJ
 
RRddNNvkHnvskfds0VvyG7Riaghq5r/88ktDr4cNWcNLL72UdTN8+Oqrr559
 
sxfuR23RGfLkk0/msyLsLtDXoPX68MMP05VXXpm233773EfAn4kjcZpsbZNN
 
NsmaS36DDrOAH1QnZ698pJpfI3WY7O2xxx5Lu+22W163mHmNNdZIO++8c9pl
 
l13S+uuvn88Vr6FDh6Zbb7017C7QENhzfBabuu6667J9HXvssdn/sUW6THro
 
n376KcdtBb52yimn5PoBnfRVV12V93Aj4Ox47bXX0ujRo/N66Nn0H9133325
 
FomX1QdI082XzzLLLNkPPv744/2iT8JZ6Dojn60eSo5Gd1JszOekl+DBBx/M
 
db2yR33dnt1www3TtNNOm7bZZpvMy9TaZV/hm2++yf21/BsdtvxN3lbrd+01
 
OewNN9yQ40x+EAerH7dVUT5PObg8QJ9IbawSqCbMapCzbbHFFrmnrraXx/fO
 
PffcHI+qI5xxxhnZ//X1WVp0NXwcDrbwPG2BjR199NFpxhlnTGuuuWbeh/X9
 
FK0AZ6L4/6677so9kfy7Xix1nvB11QYOkC3xC4sttliON0sMyfZwFurqfN26
 
666bz9O+jNfsH3kcnmT++edPV1xxRfbTk4K9aB+qTYqJ5XVVr310BeIMZyHO
 
WXwtp51pppnSzDPPnHbfffd85oTNVRvshx2JIaebbrrch8DOim+wv9XX8Zvy
 
JPEanUtffa722O23357PhCWWWCLHux3Ft3ybcx9XdPbZZ+eYs9nh/PNZvPrq
 
qznOHjx4cI49pplmmnwe0R3JzftD/toKMKMI/yCGxGf6M/8HbOudd97JMd30
 
00+f+Qs20Fe+wx66/vrr0wwzzJDnudCCdmTvr7zySp7/Yk/ii1xfs8K1ytFo
 
F+SqeFs+XNyx0EIL5b/fdNNNuS7UijF0q8JnxTfg2H2WePdazg9PL15bccUV
 
s93hD/uqdmAN6t3iJ/wJHqej38tPb7rppvkMobERizUjxMm4Ij3Haqr8mftf
 
dLHycHzupPqRA9UG/dTVV1+dczpcBc1zbQxJB61eJ74UZ/ZW7YD9q23gKtm6
 
/XTPPffkupvf68/tcXPW67zgj/0b+Wlt/icuxdlWWaviHoiHaRFOPvnkPDtq
 
1llnzfa21lpr5br/U0891VJ5an+E/aefgB5FHMen3XHHHf98rvaqvcwH8oX1
 
ed/kgu9iC+oVYsnzzz8/62LYHR8s3+S3zCxrjztlr3gWvoDuDf9S/IC14jxd
 
l2vBN1TJ9qzDPcDT0rSJO8T67jd9Hm2CM6e+ThJoXtjf9iN7Y3fsrzaGFKOZ
 
lSmPWHbZZXtED22f2ff0MvLEvfba6x8tlzqc855tyMvkZ7gRtUS2VW8rfo45
 
nTvssEOORf1f7aO8j7+78cYbs/2KPdX88X+uqxF1x/q1iyvcf/ddvMHW5ptv
 
vqy1cQ65lkavM9DzUPMRV4ohfe61MSTbo/nAXcrp8J2TU4Plf/gsvsjvXG21
 
1XJdTWzLj957773Zpr3PezbeeOPMX9J60aDYo2yy2CXeTo2KbfILet9r40o+
 
xDmBXxen2c9q/WwbH+i9fe0/imab33UPaEjdA/ffuYB3rdflBVoL9jcdVYkh
 
xTe4whJD+uz5PlyGnKs7e9S/KfM1Tz/99Kz5NP+IHay88sp5vjsbYwPFR/ld
 
7F+dWw3A+vAKF110UX7JNdX1+WA1BXVxXF69VkVchv8zQ9d7/U7vHzlyZPaB
 
+EH+vrfjTeuSQ7uP6qPsSzxsPezOPfA5OE+qEvsGeg+ldiCXwFuIa3pi5qW9
 
w2+xWTW/HXfcMde52Tb9tXrEzTffnH1tfZ5oj7IXmlHnAL6czeBKvNS/cSb2
 
rvhXbjqpOIxN8WsXXnhhrinY62LplVZaKde5HnjggV57hkO5B+ov48aNy/eA
 
v1VnE1fo99BjjLMK7r//wGeNH9H3gzOzz53JkwP5Clu6++67MxcgH7TP2TWd
 
y+WXX57j1o5iKLaPWxEP8nPDhw/Psea+++6bzjnnnOwf5Wcd+V973zWJR485
 
5pjsW6wHP8iH6hcquV5P7f1yD/Ag1ovjoUPADZV7gEMK7r9/Qu4j9mMj4q1a
 
n2EP8hX2rBhRDNge/8eO/Cx7G9eN35CveD6J2JIN1caRHaH00tEW4vjUqMSR
 
7LGrsa5r8XNwF+xADZDfFb8OGTIk9/36+ZOT6/kdYmP8vph37bXX/kevhc9h
 
37iftnihQP9GqRvZ5/gNtS91WXEi/zKpfY+TlJ+U/ElPnmdxPfTQQzmOrQLv
 
zbeI9/AuZqaxOfGeXI/WQ8yrztCVXK/otdisnFMciwPi26p4DwLVQul/xWOY
 
V4uzx+fLgfwfp0jfLhep30M4bnnSOuusk/lOuhL2WUXeW64lrtZPITcUa/J7
 
uJ36XG9SKHotNoqXwdfIi6eeeup87uBr3AP3M3K2wKSAz5ZDrbrqqpmLZ2v4
 
fByAGQ/8ga/jIGn5azl6vk9sid+XszV6zkNHYDNiZr5bXdA1y/XEw3I9dT3x
 
sHix3mZq9Vrm16t18mt4Grwq3gZ/E9x/oD3YV/gE+ZfaGT9HV8uO6InlKXQT
 
+BZ5Ck4DN9nsuUnhStXqzaB3rog38T5yPdfsDCn9v0WvpRdfnsbOSh+fvht8
 
jRy42e9Lo2AfutfO8yrGSD0JfkksZK/hs+md689pfoHmioaEbdpfrcK/lV56
 
elSakJLrqW/oWePX+T25Ld+P+y96LfE2Hir0Wt2H+yZWcr6513h0570zrlVj
 
czmOGh1OW11MjiJnc9aUM9t9kZ/gU7xaUafk7KEPUJOQ6/H5Yk71QeeM84gt
 
skm6M/ehnvMNdB4lL7av6IfUb8XquGUztXALait8X6vFDrXPkMQp6Jd0pos3
 
7Sm5XpnpWl6teqbX5nqlridfm3LKKfO9kc/SEziH62f4BjqPkhfTF9Zq4qaa
 
aqr8KnEEfa46Dx0g+2yl+82u5P+uHVeinmt/4SH1m8jv6Ji8rz+c684h/KXP
 
2yxe81rwLfZIdzVxgf+7r0UXSBOHD6cLLDohsbq5PaW/CX+g5uve06y20v6z
 
h9SOxZi4bty5/E68Kabyd7kMjr0/aSlcp9iHDtm53Kr5RW+j9DHR7BVdoDlv
 
Ygh5M3+mRupe08XrLWF77JD/sw/xwnR/zn522+znnvWXflI1XjyKOi8+nDbf
 
3ARc+sCBA/OZ05czUwLNi9LLZb+o7dIF4uH4NXmx+KFo4mp5O77Mv2GH8jz1
 
T/ZJd0vTgGehcWiW+L7YV1kr7kDeRn/ijCnciXsgvhIH8H9qv/RMOAVcXdXr
 
cIHGwj6yn8SEzmmaOPsHN6XWQhdIE9eeLtAexGeqHavfDBgwIGudcC1ifnop
 
evEq9SbXomi7+Hf8XMlLnCc0gTRQuCJfr4dr8gwS9WN+3v1q1jkkgd5F6WMS
 
j+OAN99888wR8G00cWInsWNnNXFFr65OjFswE1LMxXbXW2+9PLPc9wrXXgXU
 
1j9oKPkrORstYPFxekxcg7PEvapfu5+Bx6TTcP/M7CizwwIBqO1jEhfpCREL
 
lphQH0vRxHXHNuxBe06MpXcZz8fniVHNbJIL0XCwz0blekWfT/uo1siu8K/O
 
G/7K1+S11qjerTanR80sLXYnLpCr8nt0J/JX75HT6QstOnn+38+oqn8P9C5K
 
zlb6mMaOHZu5D5yjmMg5zh7wBD2Rj/hd7BoXw64LF2Nf0jDg2PuqN7kWzhE8
 
G1+m/mFeAX9Mr6QGYAZQqWs7E2gErRdXiUdyLTRO/KL7JffFXfJx/CSfWebp
 
i8nV0cWroTPsX5CvyDHEds5qNV7xEp5f3CcW9L2e1sQVHpRenS/AaerpkC/y
 
J+aL2Psd6dV7AmUugrUUPYW805nDZsTSbfWXsB3PdSs9Zvq7+UQzTJxZYoPS
 
90J773pB/iqe1lOA23W+NDuHG+gYtX1MehD5MjGeGErMV/gNsVJv1lfKs2PM
 
uTC/w3611/kG2vwzzzwz+4S29OqTizLLrtQ/6JDxq+4BWyk+t70em8IR+ffO
 
CdpD/c24WT3b7i2Nb7E3cI7Q9zrb2Kp/O7k954HqouQrzlb7yb5SR7LP9DGJ
 
j4omri9ruPa02LbkUNbE9uRCdHpyJ7x8T/QN12rW1D/o43FDfh8trtkiZR5w
 
Z2Np90p9XD6q/uj/bBW/ySbFrMVu/W4cFC5JPqvW6f1RO249yKPENfhr8ZK+
 
SvtMHOUZuPIV8VUjZ+Haj2p9ciK2xgbU1PneffbZJ+uK2Ep3dWRljlvpA1P/
 
EEfXz/zoiVhaHFF0qOJn9778TPGD38Wf42BoVaKO0Doosyf0Vvic6bLotdib
 
WI4uVQ2uKjPMynNQxZQ4CesVh3nJgcRlYlG+o7O+uNQ/+JMy2wr3wZ7Vq8WB
 
PR1LsyGzGP0e55uesxJjsn2fB200bSqOhq33F31Yq6K+xkQz4kwVz8gj+A3n
 
cFVnmFkTGyh+GZ+BR5R38st8Q0c6str6R3mGi1yNrdFE+ru6iFi6p5+ZVJ4j
 
Yt1id3G83LGs1Rkn3xM/izXwKs6RKpx7ga6h5GxmT8iPaCHFZvwam5M/0E74
 
/Jvh2VzOfrkRHZl9i5dnM/gO+SebaUtH1lb9Ay9a5lfxd7j63tKf+Zl+P25I
 
7FqeH1n4ErYnR1VrZ5N6p+V5UTtoLtifeLHaGpN9hofHgetjqufRmgX2Il6D
 
rYjJxGyujR/Bs7Ite9y14fVr6x9qbHyk2NTXcPz8TG9z9GXGuf7Ntp4jYq23
 
3HJL1rA6E50NzpfwddVHyVdqe2xqa0zszwyYzswWrTKsna3oF621J2cKDsQz
 
auRN7LLMBOATzWvFT+Ip8Yt9GUuzf3U/+gLrwaf4HNiVFxszP8s61ffwyT0x
 
IzrQu/AZyXvEKfIDOVuZTeEz7K5eq6oo/ZF8Gx9X/IS4UQwp7vR3dWnxpxmN
 
tFiNiNuslS5MPu1zKbNRSlxftND4LL5QnZA/r2KOHfh/2H906+pacjZ12TJv
 
t5XzgzILp9S02Zh9zafgWUq/XqPnAasbsHtnAf7V7OLa2gHuBIfiez6/8syr
 
QHWBu1O7oiUSx+CduzJ7u5lRagtsS0yJ93f+yKOqMhPAGvlZfBa+RO0Ap1lq
 
oXya2gHtjZk9NN/qGlVYe6BtlDxHbtAbOqlmQNFNiqOr1BdUgEuWT9K8sDt6
 
G3xrbe2A/kVOJ0/F81TtGgKBZoPzwEx+uaY6Ya3Wku2p7+hJ4K/9OfxcIDB5
 
wJfgj9Us9C+pleoJKnFJ6UuvwrOFA4FWAb2nfgm9P+JMeXgjNa6BQKuDL8OP
 
qBfiWsu8h0Ag0Hvg18SUEyZMyH4v8rZAoDEounS1O3pYdqnGqgbJNqPvIBDo
 
OeBX9DfQpdNFizvpSs2npSfSF8QvqoP0x1pQINCTYG+0z3oZcZp0ezQ1ehG8
 
/Fndjv3pmaflDrsLBLoHtqPHUd2OfdGHqSHoATHv2jPe2CKdJk2bZ5KonYs1
 
+4POKBDoaYgV6UL5NnVyffB65MuczzIDUB+7eLPMkYheu0Cg6+Cn6ETpLPUk
 
mbWLO2krblRP0Eeh/8B79Wfpow8EAp2HPA5noj4urlQfb69Wh880p4J2TKxp
 
XlPEl4FA50HnZa6LeNFz+syKaM+G2KNZFHp0cSr68EIjFgh0HvI0/Ii+Of07
 
+gzaA3s0E1qPHS5TP1DkdIFA52FOhJ5H+ZlZtupz7YHN0Yp5xoN5AOZQhG4s
 
EOg8cCBmuPBznjnWUX5Gh8LO1AxwnOwvtCmBQOdh7pf6mxlmegw87749G9KP
 
rCfBvDMz3eR/odUMBDoP9kLP5dkFfJdZZuLNtnwdrsScRDEozmX06NFZjxII
 
BLoGNqYObmaZubK0J2ypPA+yPDeM1tmzWtUVzAgeN25czOQLBLoBsaTZJ/yX
 
+ZflWSV0JjSYZpaq4Y0ZMybPdcOfmC9YO0slEAh0DXReeH/aLtyI2hvbUz8w
 
M5D/UzM3x9NcM9qwqBEEAt1HmRdoRiIfx9Y8L4gG0zOf6ZpHjBiRewrooZvh
 
OROBQDOAzlKdHK+iJkBzMn78+KxvNs+hv8wsDQQCgUAgEAgEAoFAINB6wGng
 
Pryajd+wXjW+Zlt3oG9BA4VX9zyQ+pe5kX05m4emXx+pZ+7g8HGOVe9nK89Y
 
t256TS/3LuyuffwvS0EfNg==
 
"], {{0, 98.}, {221., 0}}, {0, 255},
 
ColorFunction->RGBColor,
 
ImageResolution->72],
 
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
 
Selectable->False],
 
DefaultBaseStyle->"ImageGraphics",
 
ImageSize->Automatic,
 
ImageSizeRaw->{221., 98.},
 
PlotRange->{{0, 221.}, {0, 98.}}]), !(*
 
GraphicsBox[
 
TagBox[RasterBox[CompressedData["
 
1:eJzt3Qe8ZlV1Pn7/aoyJyScaiTQpAlIMHQSpglIEBASlE6oDiIB0EQlFAYNB
 
kJIIOvSiIiUgbQQp0jvSERDpCIEgASkp++d357/wzOt9Zxi4c99z3lnP5/M6
 
OHdm7jn3nP3stZ71rLU/stVX1t3mne94xzt2e+8f/mfdLb+64q67bvm1z7//
 
D/9nvZ12+9K2O4374mo77T5u23G7fmKrd/3hN//3D5/3/n/veMe7//BrSSQS
 
iUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQi
 
kUgkEolEIpFIJBKJRCKRSCQSrccrr7xSHnrooXLjjTeWxx57rPzP//zPoC8p
 
kUgMGK+//nr59a9/XU466aSy9dZbl7XXXrvsvPPO5dxzzy3PPPPMoC8vkUgM
 
AP/93/9dnn766fLTn/607LDDDmWxxRYr0003Xfmbv/mbMtNMM5VPfvKTZf/9
 
9y/XXHNN+c///M9BX24ikRgD/O///m/53e9+V6677rpywAEHVB748Ic/XOab
 
b76y6aablj322KPGELPNNluZY445yjrrrFOOOuqoctddd5XXXntt0JefSCSm
 
El599dVyzz33lKOPPrqsu+66Za655qrcsOaaa5Z/+Zd/Kbfcckt5+OGHy+WX
 
X17222+/sswyy5Tpp5++/P3f/33ZYostyqmnnloeffTRyjGJRGI48F//9V91
 
XZ9xxhll3LhxZf755685xHLLLVdjiCuuuKL89re/rVqEvOP3v/995Ymzzz67
 
fPnLXy4LLrhg5Yklllii7L777uWSSy4pzz///KBvK5FIvA2oQfzHf/xHjQf2
 
3HPPstRSS9V4AT9Y9+edd1555JFHat7QGxPgCbrD3XffXY4//viyySab1Hhj
 
lllmKausskr51re+VWsdL7/88oDuLpFIvFVYt7feemv59re/XVZfffU39ISN
 
NtqonHDCCVVPeOmllyZZx8QZYo/nnnuu3HDDDeXQQw+t3CD2wBXrrbdeOeaY
 
Y8p9991X/1wikWg35Ahyg5NPPrlsvPHGZZ555qkxw6c//elyyCGH1HUuN7Ce
 
mzGDGMLf83W/ih8C/hzt4oknnigTJkwoX/3qV8uSSy5Zcw65x7bbbltzkaee
 
eiq1iUSihbCeaQgXXHBB2XHHHcviiy9e93m/7rXXXnVdP/7445U/etew/29t
 
0y0/+9nP1tzjzDPPrL/XhFhDXPLggw9WLQMv0C5nnHHGqmV8/etfr7nMCy+8
 
MJa3nkgk+sDaphNcf/31VWtcYYUVarww77zzlq222qqcfvrp5YEHHqj+yEnl
 
ErxQ//qv/1oWWmihMsMMM5Sll1668spll11W66FN4CK/d8cdd5Rjjz221kJm
 
nXXW+pHL/PM//3PNbXzPRCIxGFh/6pVqk3wKc845Z12ja621Vv292267re7l
 
zVyhH+QXdATr/Qtf+EKZffbZK8+sttpq5bDDDiu33357zTECeEks8uyzz5ar
 
rrqqHHjggeVTn/pUjSU++tGPVj2TJ5M38818/0QiMTqw3p588smaA2y55ZY1
 
xqcFqE/wPIrx5Rq9GsOk0FzvV199dTn44IOrZjHzzDNXDcN6p2vSJppxSGgT
 
ejbkNrvttlv1YopB5DY77bRT9Wi6ntQmEompB+tLvZJfIeqV1iF+2H777atG
 
aP2KK97qWmyu94suuqj6Ka1z/LPIIotUL7a6KB5pAmeoh9x///3VR7XZZpvV
 
GgcNRM7DbyXOePHFF0fjR5FIJP5/WLM8S7/85S9rjXHVVVetPgQfuQB/Ap8C
 
HWK0YvnQIn/1q1+VH/7wh9VX9bGPfazy0fLLL1/22WefcuWVV/5Jb4bvj8Nu
 
uummcsQRR1SvtjxFfdV/82q71vRqJxJvH9FfKbbfcMMNa6xvjUa98tprr631
 
SutyasTvoUXiJpqGNR7ctMYaa1RtwtdcZ8B1WP9yCrGOnAen0CbEOqGb8mal
 
NpFITDmiXnnhhRfWHF5s/6EPfagsvPDCZddddy0XX3xx1SBG8j6ONkKbiPUe
 
fV14au65567axIknnlh5rFebkOv85je/Kf/2b/9WcyDeTTzBP0GrcB/8V4lE
 
YvKwpuTo+ivtu9FfqTax+eab131Xji/fGOsZLrHe7fs0iF122aXylb7w0CbM
 
jcAjTbhO93TnnXfWXIhvi5eT9rnyyitXr/bNN9+cXu1EYhKw9u69997qQ1Cv
 
/MhHPlLXEE+BXJ6nwDobdEweWqR66CmnnFJ7O+U9NEx5xL777lvznuZ6b3q1
 
eTXoKO4L99Ex119//Vpb9W82c5VEYlqH9aYeYE82wylicB4luv9bqVeOBVwP
 
LRJv0R1jbkRTi9Tn0ezNCG1CbqQPNLza6hy82l/60pdqPTRzjkTi/2AvvvTS
 
S8sGG2xQ1wkNb7vttitnnXVWzd3HQmN4q4j1bhaVesY3vvGNmhO5Dx5OOdFp
 
p51W+8ub+VDUR3g7w6utPkL31Pf185//vLX3nEiMJdQfxo8fX73N1oiYQa6u
 
dtiVObGuM7RIcZAZlosuumiNgz7+8Y9XrYLW+u///u8T/b2oj9Af5CW40Syr
 
4447rjP3nkhMTVgzaofWhj4nvsipVa+c2oi5EXQUPaS0CXEEnWHFFVes8QVt
 
QswUcJ984PxdYg+6Cw1m0DpLItEGNPnB+lALDIjd1Q3F23oguqDdhRYpLhIX
 
HHnkkbUnRO6gr4P2am4Er2cAp9Ad9HAkPyQSf8Sk+IH+J3/njeKH6u25bjOa
 
2oQ+UPnDsssuW7UJsYR4ITgg+SGRGBmT4gd1C/3SCyywQJ3LQM/rGugIMdPy
 
nHPOqXMifPRjhMaQ/JBIjIzJ8YO4gW6p9qcfoqsIbYKGiefERoHkh0RiZEwr
 
/BAQM/Tqr8kPicTImNb4YSQkPyQSIyP5IfkhkeiH5Ifkh0SiH5Ifkh8SiX5I
 
fkh+SCT6Ifkh+SGR6Ifkh+SHRKIfkh+SHxKJfkh+SH5IJPoh+SH5IZHoh+SH
 
5IdEoh+SH5IfEol+SH5Ifkgk+iH5IfkhkeiH5Ifkh0SiH5Ifkh8SiX5Ifkh+
 
SCT6Ifkh+SGR6Ifkh+SHRKIfkh+SHxKJfkh+SH5IJPoh+SH5IZHoh+SH5IdE
 
oh+SH5IfEol+SH5Ifkgk+mFa4Qdnej/22GPl/PPPLz/5yU/queSB5IdEYmS8
 
mfN5559//rL99tuXBx98cIBX+tbgPL1nn3228oIzhpdZZpmy1lprlfPOOy/P
 
500kJoNJ8cPLL79crrnmmnLYYYeVs846q7zwwgsDvNIpg7XvDN4rrriinte9
 
3HLLlRlnnLHGQrvttlu59dZb3ziDM/khkRgZk+IHawxHPP300+X555+f6Ezb
 
tsI1uubbbrutfPvb3y6rrrpqmWWWWcqss85a1l577XLssceWu+++u/6ZQPJD
 
IjEygh/mm2++8vGPf7ycfPLJ5bXXXnvj69ZbfNqO119/veZAxx13XNlggw3K
 
XHPNVWaYYYaywgorlIMPPrjGQu4X78X9+PW5554rp556alliiSWSHxKJBsTg
 
OGHRRRct0003XVljjTXK8ccfXx555JHOrBHX+dRTT5Vzzz23bLfddmWBBRYo
 
008/fVlkkUXK7rvvXi666KLyxBNPVP5o8hwevP/++ys/rrbaavXvLLjggvXn
 
0QU+TCSmNqwR8bb9dbHFFisf+MAH6hpRr5Br2G/bulZcF03kF7/4Rdlrr73K
 
UkstVeMFccOWW25ZfvSjH9V44pVXXpnoHvCJnOmcc84pW221VY2dcKP4wc/h
 
vvvuG+BdJRLtgXXz6quvlt/85je17rfNNtuUeeaZp/zt3/5tXW9f+9rX6vr7
 
/e9/P+hLnQjW/C9/+cuqMayyyirlwx/+cNUf1SZoDHfccUd58cUX36hRgHv9
 
3e9+V6688sqy5557liWXXLLGDO5X3HH22WfXuEmckUgk/gjriE4nlvj+979f
 
tTx7sTX3mc98phxxxBHl3nvvHfja8f0feuihqjGst956Zc455yx/93d/V+sT
 
9v7rrruu6glNjQHwG83yn/7pn8rKK69c+WS22WYr66+/fs2n7rnnnvLSSy9N
 
xCeJRGJiiL2tL1reQQcdVGsaH/zgB8tHP/rRsummm9bc/PHHHx/zdRQag5xH
 
jMOTISdYaKGFqsYwYcKE8uSTT9Y/1+SF4JPx48eXz3/+82WOOeaovIcj1G1v
 
uummqsH08kkikRgZ1gldwnqj7fELLLzwwlWb8OuOO+5YLrjggrquxuJaIif4
 
6le/Wj7xiU+8kROMGzeunHHGGXX9u97m+rbeaQxyhq233rrWb/EczdK/8/Of
 
/7z6v/gqkxcSiSmHdSMut/5OP/30Gj/wEdi3xRUHHnhgufnmm6sWMDVAF6Ej
 
0Bjs9zPPPHPNC8QB/XIC10x34IvaY489Kp/IP2iWtEh8wlvt305eSCTePqw/
 
e7j8/aijjqo10A996EOVKz73uc9Vv8ADDzxQ9+LRgJxArwedMXIC3+/Tn/50
 
zQluvPHGWrfozQms+TvvvLMceuihlU9mmmmmyifrrLNO1VTuuuuuqrGkxpBI
 
jD6sf/VOsT7PsnqgOof6oFj/zDPPrBrBW11//n3ahj1efdK/KydYfPHFy957
 
710uvfTS8swzz/yJxuDvqb+cdNJJVW8MzZIvSn/Z9ddfX/2fqTEkElMXzXoo
 
/wCfxLzzzlvXo1he3fCyyy6r8cabhXVLE7X+aR18nOIF/y4tEu/4fr05QfRe
 
8UarT/JtuA5eL9dx8cUXV75KjSGRGFtYm3J/Nc8TTjih+pnDg7DSSivVfZs/
 
wZqeHHDDaaedVn0MNAZ5i7xCDZPGICfoXd++txqLuEJPZmiWtMjQGHp9UYlE
 
Ymwh1qcF0AR4C1ZcccWqX9IMNtpoo8odDz/8cF+vtvUrp/jGN75Ra6g0BvrB
 
DTfcMGLdMTQGOgRfBj5Rr/zsZz9b9YrQGJIXEon2gKYolv/Zz35W64difNpB
 
eLX1RtAORoJYQB3kxz/+ca07qEuO5GPAMyeeeGKNVWgMeGjZZZetdZSrrrpq
 
RF9UIpFoB6xLMb11zKv9xS9+sdYVaQlLL710+cd//MeaE+CD3r+HD3BAr1YQ
 
vRI0BjyDb/CCX3fZZZfqw+DT6O29SiQS7URoE/IAvZFrrrnmG7VG/33kkUdW
 
H3ezj3wkmNGg9rDPPvtUjUEeIW7YbLPNqh9D7xV/RvJCItE9iAXUF66++uqa
 
A+iRUF+Ye+65yz/8wz+UU045pTz66KN/Ug/FG3oojz766Kor0CvxC98FrwXd
 
kwcqeSGR6DasYbG/+Qu82rvuuusbOQKv81e+8pXaO0GLxCf4Qi2DV1M9Qm4i
 
dqBf0hh657skEonuI7QJPks9XhtvvHGd1SRnUPOQQ8hF9HbgDfyhB2vnnXeu
 
GoMaR2oMicRwI+qht9xyS/nud79ba5Q4Iua6+HX22WcvG264Yc0/8En6GBKJ
 
aQtyCfVOXkv1UHOl/+qv/qosv/zy5fDDD6/8wYOZvJBITJuInIO3Sr7BA4kr
 
5BK9/odEIjHtAQeoU/I28EJ+61vfmmj2fCLRFtDF1c3kvOYKteXDW8gvoFY4
 
bHtqkx/4I3i0h5Ef1GzVcG6//faBv0/Nj559Mzen1gyPYQFuME+Itm6mgT6A
 
Nn3Mg9x///3rvJRhwrTAD7xiZvyq7epBG/S71Py4Hr35zhuckp7baQ18eJdc
 
ckk9B+Hd7353eec739mqz3ve857a7+w8TLMMhgXDzg90FPGoOeA8XoN+j3o/
 
73rXu2otmV+NVzVn5/wpPEP9wPoD5MDmGOy3337Vv9eGj/lqeiHV/fAXHhuW
 
PGPY+UEtV9+ZeXz8HltssUX1lw/6nfJxHeZkOPfELB59s3rsEhOD5mAGiR4i
 
NXhzm9Xe5GRt+OhL5BFaffXVq9fYvObm+fRdxjDzAz8XvcG94QYcL89wf4N+
 
p3xch/ka3if9+HKNCy+8cOBnGLQJdCPPcNttt63eHGcq0G3atD+L+R577LEa
 
R+hdcG7ND3/4w1Gb9zhIDCs/uC96ln4Rve4+ZmC2LcenjfC986mJT+VBw7L3
 
vF14hvz85orI7fUFfO9732vl+4nvr7322rLJJpvUdURT0h/ZdQwrP3heYgXz
 
MJ0f7v7MrmnTvgOux97j586jJoZ2LuEwPIO3C8/QPALPkDfHmjM3OUCXwPf2
 
gTczJ220IL4z80CvUnxfz1HOYw9yBoUzaPUrdP05DiM/iPc8O3mqfccMG2su
 
zih0z+7Ru2bWLz1prD78qrypzVq5d8zew9MufzXzU49s27hsLOEZqkebkyiu
 
8gzNLYzcS+wuzhIf6jH0sx0L+P56m+US1ox5TPGcfM0etNNOO9U96Qtf+EJ9
 
rl3GMPKD+Xbnn39+1ZLl9WZ9m6/b/Lr3yUxdvan08LH6iA/WXXfdOtvTvhcQ
 
RztTxExyZ5Idc8wxQ1Unm1J4B+Vdce4KjSa0W++snw0vhFnK5qv777EADrj1
 
1lvrfHf1MNzUzAfFM2eddVbtU/Du8UR0WXMeNn4Qc95///31bB6aJI7wnjW1
 
Inq4eVjmWfz1X/91+fM///Mx+/zlX/5lPUtMndzcreZ123s8BzGEM0PM+us3
 
N3SY4Z69k7QY85Y9Q+etRe2XZmmNmoVs/oDasJ/dWMA1eG7Ow5UP4ifcFO+X
 
a3ee1b777lvfPx4Xe1VXY8Fh4wdzLMy2Eo+qGVqHzX0aPEucbv2ZdeH5jtXn
 
1FNPrV4oc8d7PZP2HucRqsWa0yU/EmNPa1CTpv9be+oBnmHoyqE7OyfK19SG
 
xV2Tm4U2mvC9eKrxk9jGPDV8FbB+nBXBU4nrzWG0xrqIYeIHz01ub+6ms8Ht
 
K3rPRvIcuW8fXxvEZ6T9xO+LVeVD6vyf+tSnKpeM5bs/aMQztPZokmrS6psB
 
GhJe57FW79xhhx3qvNWxhGfH82D+wZJLLlk1Lt6VOA83tBMz3u1RckZnR42l
 
hjpaGBZ+cB9iAnGfOph9RY4vl+gSvP/2npjr57yipmY/zPAM6bY0R7GBmrRn
 
GHGWdadX5Zvf/GbV/8RZzpMfRA4mBhUD0kVci1zVcwvgAn5YsYUYg17R5Lmu
 
YFj4wbq6/PLLq/ZnXdGQ6cxdy/tcr73HfkSnsPfISXpnjg8joibtGdIV6MdN
 
7Y+uLJ5ybqNnbOZZb+44lrD3uB4ag+sR94WmFFwn97FXeZb2rq7tV8PAD/YV
 
9YkDDjig7ju0Y37cLsZzIMa295jJ4b1z7rmYu2tcNyUID+LBBx88UWwQul/s
 
13J5dQP67XXXXTfQn4m4xXtHJ6IXmf+sdhHX5Jr5Y8WAoTmrp3cJw8APONn5
 
P2ph8na9O2bcdBnqd/JbNVFzQPVrqIEOK5qxgfdwr732euM8p8j37cVyR3UD
 
vStteE/Frda8mIceYh2pnwXivsQY6hlini69m13nBxxtNoc5unw08nbehq7X
 
BV2//VJ93Xvl3BI1vq7f10jwDGksatJxVqM11/SPOe+R3ux8Bj12fjZtgLiH
 
7sUryTNptjPNJDRlz4t+av47P4S4SI2qK8+x6/wQPhk9MXI8mrG8bxgQe486
 
Bo7gteELHSZ4/+j+YiV6JL3f/FP3Hl+3/vyeGJ4e48+2qYcNF5jzo4eMFqnm
 
om4WaGpjcicz4ruiOXeZH+wrnoP9RH5HI1aHHpY8PXQVvEBXiZy8q7rKSLC2
 
PEM6f3idxIOBqOfoneaVEk+1jSOD43g2+GOdc21OY+SD4amSE9nDoi4Tfv82
 
o6v84Lr9zL/zne/UnzkvjRpzF659SkDTt/eo90ddhuY1DAivk3XTjA16Y3Ne
 
RJqkOIoXsY2xeeRIPJ+8N6uuumq5+OKL3/i6e9KXTmt2L86f4rFqO7rKD66R
 
zsCj5nnQiLvqUZsUIr52Von81t7jDPWu1clGgv2TpkJv4IUSdzdjA/coV+eF
 
lV+pT7VZo1WDNr8DN8gjzP6J+2l6qmjO8ih7W3iq2oou8oN4jcedFmzfsa+I
 
u9uUk44mws8rj8KFYvG2zUiZUkSPLd0uYgMzmCI2iF5InEGz1AvZ9nuOe9Jz
 
Kh+Ua5hd1qx3ijHwhlgwNOc2o4v8EH0K3in1TH66Zq/TMCL6SrxzoeEN0hv0
 
dkF/9Az1z1orZkvaXyHmwvzgBz+otUxxE09lF/J1+aDzsJszK5q9Y80YQ71N
 
HZcntK3oGj/YV8wQ57v3XsnL5efDPtfV/dl75FHqZHoazR5oYy4+OYTXSU1a
 
vVKOaE5C7zyMDTbYoH5dL4YZw11AaCr68/Xp82v476ZHXIxBv7S34UcxRltj
 
367xgz3mhBNOqHok35A+vmllTkLsPeZUyjP23nvvMe9NeruI2Q00FGund85S
 
9DaZv2J/lat3bZajtW62nNyIDiGWaM6Jac42Uw/lI2+r5twlfoh9hfbr3TFn
 
adjOI5kUPCt7j3xqnnnmqXvPT37yk06dreMZ8kXzCITXqek39O5NmDChciBd
 
QrzUxR53PeqeDW2VRuaZNf2g5tPJmXCkeXRmbLaxx6Yr/OA6+VJdn7Whr1bf
 
Uhdy0tGE9XXVVVeVz3/+8zW/irmaXUCsCx42/M7TZu5fxNYxW0VcxOvAL48r
 
upg7xr3QVdReVlpppaq/BsJTZY8TQ5gtqOembegKP+BW74pamHfLOcJdi61H
 
C/JbMbn81t4zfvz4ul+1Hc3YwPrXa9XUldUzzZiUU4THqO31v0nB/dKI9H7j
 
APeLMyA8VfhRX5c9T90jNNq2oAv8gItpczgBF9tX+GS6lJOOJuJcD3uPn4c+
 
T3tPm2t/4XWyn6pX9sYGzXMu6P72U/trl+HexLx8DmbI0MzEvKEpxxw9feH2
 
PGccmIXYpnipC/xgb7Sv6NuOfaXLtb3RgBqv/NbPxN5Dz2tzjVds4HrlhdYC
 
30PEBjErwdkW7kVMZE58l3SVfgi9xbkYeFEPgNnkgYipxBhx9lab4uK284O9
 
0j5C46XZd2GvHAvYYzw39XP6l/3Y3tPGOll4ndSknTWqT6npdWrOhRE7iCGG
 
5YygOBdDDsj7qhdAr37oZs2zt3Cj3EqM0ZYem7bzA5+MvcTPVr5N543evmkd
 
kd+KS3EnX17bPObhK7Y+rA2xAd9T0w8Qc2Hsn/R+s3266Ovoh5gT4/x494gH
 
acyBOAfI3ken4PeI808G/Yl9KPhB7O69G/R1+eBYP8c4G/nLX/7yn9SJp7U4
 
onm/UdPxzHgq49zHNvG7d98ztCbUM80ObsYGrpWuHzPa1C6GMXeUX51zzjl1
 
/o13mQ7TnEUXMYazPOTQtCV9a2346I/D2+9///vLWmutVfWUQV+TDz2X16Hp
 
M2ueZ8ZnI041O6TLOvebgfum0Vpr1ldoWOEJiXME+Xmb+e2g4bnwD4pv4hyb
 
0JXDa2h+vb3Ju+f+hpHzxUOeW8xA1HvB9xsIXzBecEbKBz/4wcojg/54bmIa
 
58S8613vKh/4wAcqjw/6uny8MzgrfDLNfSdiMjGFuIzGM0wxaRMR45kDYYah
 
OWtNzyhPgX6M6HM3A7EtPws6Kr+rNUHDN6O1mVvTnvXWmeug1jfMuaN3lnam
 
r9CnyePNvo33ve99let5p9rw8dzw1Z/92Z/VujTf8qCvKeYM0nxpVuLS5s+z
 
uW/iEe9XW2aOjTZi9qK1jwPoMc11JH+3L4mzxIHOBmtLjSxqseIa2qS6ZXPO
 
Ox5zf3wBw+6TFxfx8ahP4Pump1yeKI6iUYqz6IB6Owf9MZtHT7rYzvOzDuWD
 
g74uH7PV5Gl0yZjrFz/TmANv3+Thj3POhs1PaX2ZXa2nW1y3+eab15wq1r+f
 
hzkk5iuJucxwbFsvkxiC5hizlbz7cR5W4v+8f55h1Dh7Y+VBos31i9h7XJt3
 
n07Z9KDGTB5rxrXHXIRhgtkw/Mg4kP7oPMDmbEbvUa9vrC21sUB4jc1WMkMu
 
vFHDqDNMKcIjJd/wjsczbEudus38ADHXT9wsh6XVN89Djn5Os8nkI/LbYYlT
 
wzvDUx4zsppzTe3BfGP8uXILNcK29jLFvC996fQucU6Xz7UeLYTPLZ4h31ib
 
6jdt54fwVtt7/Pxirl9zJo95puYyWkNmCVx22WUDvuq3D/dnNq16n/vWs0BX
 
CN+A+9ZDHL4x85V4jNqiS/YiZrTyAdHe+CjFQtOqRx56+8DNu6CptUU7grbz
 
A8jPeAP5gORnfEDR5wJRWzZPyuwUOn+XziAZCXR99Vz7Cn/kgQceOFFswI9M
 
p6RlRX9w2+OmOJMyertpXV2Z8z7aCM+D5+b5+agDt61+0wV+iJk7rk0OEX3B
 
Mec4zr3m47DX8qA0z2brGsQAYqLtt9++5qTrrbdejQ3ifqIWZr/xdX/OPtT2
 
fL53bpxajD7UYeizmFLQ0T1Tz9C64ylv44yYLvAD2Hv4HdTHRvIBxSxk+YWv
 
m13WnDvSJURswFOu1myOSLOXST1TPBEzYmgQXanbREztfRND4L5h05Qnh+aM
 
OfUc2pr9rm26MnSFH8Jrp8fPuuGPEJvFnPc4D0O905oSd5th1sZ7mRTERPyg
 
+v3kUrz4zTN/5Frqz/QIsQNdpi21sDcLz0x857yfyJ2G3f/ahBzCM2z2zbR1
 
Rm1X+AGaeg6dgTdKnB2IeqczmGjkZpd14QySJnAcX7nYm/ZAg4i5Y/Yd3gZ1
 
DPVMtQBabeRZXUHz3Bt+vBVXXLFVnq6piZhxr+8WN8TMh7bmwl3iB4h6UOw9
 
fIPi7YB6p3O06OPWmHpn22by9IN9Re07Zp/zNTR12JhxL6dQ61UL4K3uIuRD
 
6kz6EHhk5YNd15TfDOjOcQ4f37L11uYzf7rGD+En4auUu+n7s/c0Z/LQeaJm
 
FPXOtu9NngMu4AsQG/FD2lciJ7W/0Fto/jEHw9yRtt9XP8S517xfYiH5IF5v
 
iy9oaqB5jq93Uw7Z9jN/usYPEF4be4+1Yq5fU4uM/BZ3iDF4Ttq+N/XGBnKM
 
pn8oZk7ymVtL+jG6MHNyUoizeeWDtEqzldqo4Y8GYjav2TC8sIsttljt5277
 
WusiP8RMEf0scojw2sReG/VOMQZ+UO90VlNb8/TwOtlX8J0aDV0lYqLm+fDy
 
jjijt837zptBzI6hI+uxMcPCOaNtf//eCuIZmjtunek77kJ9rYv8AOG1sffQ
 
+Z2LTOcPRH4b516LMdrqxeGTUcMUG8TsxYgNwke533771biC7qJ/e1g8AzFb
 
Sf+t3gzPSx2769zXhP3KM3QGhv3KM9Sv1tb9qomu8kPMNNXT2TxLq+kTEJ9H
 
vdOf0afRNn8anou+/zjPwpyQWB9ypXPPPbfmSnQJmn9ba2FvFZ4JDck9io/4
 
X9us2U0pPEO9yM7AoLWYV93WPpledJUfIHovaN94Wfx9xRVXTDQzXX6rr5Me
 
pN6pV7ote1N4nQ466KDqJ1TnExs0Z5eKQd2fdaMHXz/+sGl47hPn0YnUpdV1
 
5YNt7SWZEsRZo+ZSewf1cNPOunJvXeYH6O29oDmI5QJ6EmgTdD9xhHpnW/am
 
0FHtK67dvtJ77WZamGnMK0nrjzPahg048corr6zzscwDMuu6+bPoKsSz5lHT
 
yOwBZje2vU+mia7zQ8wWEJNaQ729F75+3333Vf3BHiy/pUsMmr/jPG7XJeYU
 
G5hFHTmpGIGeIuahWZpxIRbqaj1zcgh/LH2fzsIjK3fsQo7eD3JHz4w2Zm15
 
hs3ZWV1A1/kBQouUX1hLvA/NOlnTd6R/C5cMOocPH5fYgG5vX4m+/9BOaPl8
 
5GZbmPEVXvJhBS7AidaTeqfZxG2atTsliH52+pfnS/9Sp+lKn0xgGPghZs3F
 
elJbbvZeNPNbMYZcRE4yqH6YiA3U+2mS1oFaTMQ0rpvOIKYQ8zg3gQ7RFt1k
 
aiFmkuNCz5C/EG+2TVN+M4hnGP2C6jNNL2xXMAz8AKFFWnNiiJg11zyjSX5r
 
joo1R/Mb1DxbPhnz+9X8rQNep5jHGN4N88bEOjR99Ys29vZNDcgL5YN6TPiu
 
zc6iOXeJG2OWvThV7mg/kvN2UVceFn6I2QLNmJ2epwYaX7cu1UB5DMTsYoyx
 
3pvEl973Zi6kBhPvP55Qw6Cj0Cy74P0cbcQ8ID2q4iu6bb+Za/jUurM/jPUH
 
l43EW6GZq0fheD1CXe2TGRZ+gNh79DB4LlEPjLg9ZkHrmRZDRH/nWO1Nvo88
 
x/sidhYb2FfC6xS9I7R718drJ+Zpa2/f1EL4Y81HwKF6mcy46NWUcbufj1jL
 
+zuWH/GneU+95xlGjzGPq/VED+9a/NPEMPEDhBapb9b+2zsfQX6r3uSdC0/V
 
WPV3Rmwg3tRb1tt7Kv6JM9bUwuQgXek9HW3EjCzzY9Q7zdlsrsWmpqRH3PlO
 
Y/lxFoT4Ru7XhPdLXOoZ6rPwDLvcJzNs/BBeVjNH7NG8NvrBI3+Peie/ivyf
 
9jdWvms1CT3ZfNRiAzWXyEn9Si+hVTbnwgxrPXNyiPmM9mhcGWczR6wVWqa9
 
QC+DnpWx/Ig9PUu5YcC16anl+beWPMPm17uIYeMHCK8Nz3JzPmPA/VmLdMEL
 
L7xwzPwqYhszB8Us/LYRG0T9Rb+ZmMZ8Tb2cXdTtRxM4U31T35p6p1mNzVl0
 
uFOuLz70fMfyQ9tWvwx+jzOwDj300Fojo4GJU7uuKw8jP4QWGf3QcaZ8cxYd
 
fUncRwsbS/0Bd9FMXUtzZlzzDCxzYTyTruasowX3H/NU6MlyMppEG+P1eIZx
 
VgkNbNAem9HAMPIDWP+0SPNUxOsxT6Vtay7O3jVvTA8J3URM02Xf4Ggi5rHh
 
TL0Zfj76F9r0HF2juX/qLLghzsAatEd3NDCs/ADRe2E+MC1C/N6ms4mAP9/s
 
4uYZWHmu1MSwN/Oei694jWKeq3y/DR86iTmhyy+/fPWG67cblj6ZYeYH/M13
 
aG8Wm+qdsze7v0G/Uz7ee3582ry8Qn7dnAuT+D+Isegzcns1KXGW2WHO2WnD
 
h9Ys/7F+aJd8em2Kb94OhpkfoJkX8uOpa1qHg36nfLxLekK87/qRzIWZlua8
 
TwliHpCZje9973vLe97znlZ93ve+99WapmcY88aHAcPOD3EWiVoUXXnQ79FI
 
Hz93fpq77rpraPad0UZolc5AkuePtR9qUh/1MTmPvhHv2jBh2PkB7D3q0M7W
 
sQ4H/T41P66HLuJMnK719o01ov6jruidbctH3xVewF/Dxu/TAj+AOjW/gXNZ
 
Bv0+NT+uh5aV9YpEG4Ef1GZoZOpH6svDyA+JRGLKIDfn0Yt+Qh41ferqzfaz
 
YYuVEonE5GHdy8n5UvVDm4kgdviLv/iL6nXnZ+fvEPdmrS2RmHbA68V77Pxg
 
fcS8x84d4M0xA8s8C/1yPEVmqasp8QJPq31CicS0gOhloZOba8OvN9NMM9Xa
 
u7mZekn4VvUO8anpmeUVNR/LzFBzCXh6MudIJIYHURPSb+aMpphpKJ9wPjw+
 
cB4LTVIuYQYBD5++el4isYVZTDhEn4w6Tr+5OYlEohuIHkU+dd5w/erWOQ+h
 
/mHntek1xge9a93652eVg6jPO+MST/CHmcc+YcKE2oOY2kQi0T1Yt3qTzB8x
 
/8S6xgvWOc2B9qhXfXJzy+QTap9yD3NL5BtyErMRnSXIZ57aRCLRDUS90twh
 
PifzDXme5BPmdKlVqF32nu2KT9Qz/H4vZ4gt4t8071XvKv3SvxnahB4ofz9z
 
jkSifbAurW3r1BwU/WR0R3u99ewMAXN3zD9srmF84vfMaDUnj+Zg7tJIeYPf
 
U+90Rrl5oGodZvDpm6ZNmHcUMUnyRCIxeFiHfMPqleaVmYXS1Ar23nvvmmNY
 
180cIDRLcxj1m/FG6X92RqCZa5Oa0+9rNEpzOfWl6Hniq/L9zMzRP0PTSG0i
 
kRgcrD+9wGoNeECtQU3SejUX88wzz6zaZHOth2ZpZrI5yv4cP5R8wTkt/A7m
 
/U1OT2jyywknnFD7pc1okss4a1ZuIx+Rl6Q2kUiMHaw3/eVqkvQA87asTR9n
 
H8sv9An39lDgE/1J8gOzm+UHNEtxg7gDX5j7PCV9QpGfmOPW1CbkNnIc84b1
 
IOGozDkSiamHZr1SPcFsZp5HuYS5Voccckj1OoopejUGNQZr2OwyZy/Y583p
 
klc4I5k34u30ZOEe9U59HLQJs3TkHHId3GO+vHppahOJxOjCerKuaAjOHGt6
 
op0JwI9gPhINopnzRw5AswyNIbzT6pNmDtAlR3MWsDhB7nL22WeXcePG1djE
 
deKL0CbEMKlNJBJvH/Z+69fcZX4mnujwPZvHbK6p2RTNGfu9GoOz0mkM1qkZ
 
ZuYAW6fmtE6Nvdy/KRYxjyVqKeKV0Cb0j4tl5EipTSQSUw7rJvZ+5wfFTH16
 
gXmFPAe33XZb1f+aazw0BjUL5x/bt8UL8hBxvjNDaQxjcZ5jcJt+D7mPs0px
 
FG1CbqROon80+8gTiTeHqFfyETiP1Bn1/AXWlfN49FXxROOA5t7bqzFYi/or
 
ejWGXl/UWABniVWckyt2USeJ3MhMGufTmuc+rZ1Bm0hMCawPvgH+pOY6Mk/f
 
+WI80aHxBcIXxRNJY3BWsPnfYgY6JI0hfFGDhjjBLDVa5TbbbFN5L+ZJO0PX
 
fdNWU5tIJP6IyNf5DsxYlqOrVdr7zW1xFnDv3h9xhjmdfErWW/ii8IrzHkJj
 
aFOOP5I2Efcqb8Jnfg5dP7MwkRgt0BmuueaaOh/W3m+N65s4/PDDa32heU4j
 
RO+VPMO+qxeTj5ovisagdkBjmJQHctDAWWIF9Vj5EN1VPVSsJOe49tprB32J
 
iUQrYK3T6hZccMG6l+IJHiZ+gl6NgR5pf3WOEC9S+KJoDP4NcUaXZqTLlcRA
 
cqc4Q0oPuntpU9yTSAwKNAfnTFsXNEh9TiNpDHyI1o2cg69A7k5jwBVqBG3Q
 
GN4M3E9vvSLOoKRF8GiYY5M6RCLxR36gH3zyk5+sen7AHsoXpfeK30iMQXvk
 
jaYxmAfXpRmych73K2Zo+jXFRT/96U8r3yU/JBJ/xKT4QUzA46THgsYgxohe
 
CT7rLp2pguvoIubZmaGv3hkckPyQSIyMSfGDuFu+4dxpWv/48eOr9t/F82vU
 
JOiOvFHyoyOOOOKN+0h+SCRGxqT4IfoZ1Df0S/f2XnUJdFO+Tl7QOMcPL0Dy
 
QyIxMibFD010lRcCyQ+JxJTjzfJD15H8kEhMOZIfkh8SiX5Ifkh+SCT6Ifkh
 
+SGR6Ifkh+SHRKIfkh+SHxKJfkh+SH5IJPoh+SH5IZHoh+SH5IdEoh+SH5If
 
Eol+SH5Ifkgk+iH5IfkhkeiH5Ifkh0SiH5Ifkh8SiX5Ifkh+SCT6Ifkh+SGR
 
6Ifkh+SHRKIfkh+SHxKJfkh+SH5IJPoh+SH5IZHoh+SH5IdEoh+SH5IfEol+
 
SH5Ifkgk+iH5IfkhkeiHyfGDcyud59319ZL8kEhMOSbFD3jht7/9bbn99tvL
 
vffeW9dRV9dN8kMiMeWY3Pnd55xzTtlkk03q5wc/+EH51a9+VV555ZXOnbfn
 
mn/xi1/Uc4bnmmuucthhh5WXXnqpfi35IZEYGZPihxdffLHyw8orr1ymn376
 
stBCC5Vtt922nHfeeeXpp58ur7322gCvfMpgvT/00EPlkEMOKVtttVW54IIL
 
anwEyQ+JxMiYXH7xxBNPlLPPPrtsvfXWZd555y0zzzxzWW655co+++xT92Nn
 
esc6azteffXV8vDDD5c77rij3ncg+SGRGBnWifWAH5ZZZpnyox/9qK6jyB/8
 
av1YU8ccc0xZd911y+yzz14/a6yxRo3T6RNd1Sbc33PPPVfOOOOMynvJD4nE
 
H/H888+XE088sSy66KJ1zW+33XZVx8MbzbjAevF711xzTTnooIPK8ssvX2aY
 
YYYaU9Am/BsPPvjgRNzSZrjG119/veqvEyZMKNtss03lhgUWWKDei7pNIjGt
 
g253ww03lO23376uD5/VV1+9fOc736kxw8svvzzRXmpNPf744zV/32WXXcrC
 
Cy9ceQK/7LjjjuWiiy4qzzzzTP1zbYX7kRfdeOONVY/4zGc+U7lx7rnnrvzo
 
97vAcYnE1IZ1QIe0JsQFK6ywQq3/fexjHyubbrppOemkk6quh0diT/V3/P8H
 
HnignHbaaWXzzTeva2uWWWYpK664Ytl///1rnNE2bcL1y4PuueeeMn78+LL+
 
+uvX65511lnLSiutVDkxcqVEIvFHNOOC3XbbrSy22GJVi1x88cVrXKBm8eST
 
T04UF1hvuOW2224rRx99dFl77bXLbLPNVuaYY47630ceeWS58847awwyyHg9
 
+OyRRx4pZ511Vhk3blytxeBB97fHHnuUn/3sZzXXyLwikRgZ1hEfkbjg9NNP
 
L1tssUWZZ555alwgrhAXXHfdddUX0cw5xAjPPvtsufLKK+ufWXrppWvOQfP0
 
b/z4xz8ujz322JhrE6ExuLbLL7+87LXXXvXa3M98881X65yu7de//nW9tkQi
 
MXnYQ3GAuEAMwHMoLuArWmeddWo99O677/6TuIAf4tFHHy3nnntu2WGHHcr8
 
889fZppppvKJT3yi7L777uWSSy6pa3UstAn89cILL5RbbrmlHH744bXWQmOg
 
r3zuc58rxx57bLnrrrsyl0gk3iKsMVrjFVdcUeMC9T8xuXW/5ZZb1hiDn6C3
 
HioGue+++2odQG0Dr0SOT+Ogh1q7U6OGiK/4Iu+///6qnWy88ca1xuL700bo
 
kddff32taaYGmUi8fYgL5O7igp122qksuOCCZcYZZyxLLrlk1SouvfTSWvvs
 
1SZwwM0331w9EjyY/g6u4HH+3ve+V3s6cMlo5PzWOp4Sv/B4qcfQUOQSoTGo
 
Yz711FOpMSQSowzrTz5hTR9//PFlww03rGtd3rHKKqvUfqebbrppRG2CF1tu
 
If9fYoklKk/gGJ4D3ky66FvVJkJjiDiHr1OcI14IjYH3KTWGRGLqw96rbilH
 
UA/kHbAW1QnXW2+98v3vf7/mFuKCZs4R3uYzzzyz9nDQLuUqyy67bPna175W
 
9UMx/5TUQ0NjuPXWW2uMwrehdkJnoJnQSdRPUmNIJMYW1rFYXW6x995717hA
 
zULdUFygr8vXmz1ceII2QBfUC8p/EOsZz9AR9YdOLo7AUWIZdRYaw0YbbVQ1
 
BnzD13nggQeWq6++umqhqTEkEoNBxAVidzE8X4G4gG9CXPD1r3+9xvzigl5t
 
gq+bTigv0RcVNVSaZ7/6Rnw/tdLzzz+/fOUrX6nagu+3yCKLlJ133rn6N/SU
 
tcmXlUhMywhfolheDxdvlJwjvNqHHnpozQF4qZraIB7gubr44ovLAQccUPbc
 
c8+qU/TWNZo+hquuuqr+WbUIcYe4YbPNNqs+TvEEH1QikWgfoofLGhbjiwdo
 
kdawOuMpp5xSNYjmfJmICez5+rvEFb3/Js1TLwiP5lprrVV1Udyz5pprVo2B
 
Jxr3ZC6RSLQfTa/2rrvuWnu38IRcQH3U7/MyT8onJc6gceIMsYEYQU8IjUF9
 
4pvf/Gbt8cBHWa9MJLqF3h4uvV5zzjlnXd/iCvGFGohaSDOfaMYTF154YdUY
 
+Bj8PTVRvkyzXPBPzmhIJLqN8GrzOX/3u9+tPmdapHqoWTNmseinpF+odcSM
 
CRqDeVZ0DPmE/OTkk09+o3aaSCSGB+oJTa+2+oacwzwWHibahP6uo446quoK
 
Yg3csNpqq1VeoW/yOqTGkEgML6KHiwfaLBaagh4uuQPO4HlUr1xqqaXKvvvu
 
W2dc4pXUGBKJaQPh1ZZXHHfccWWDDTaoPu3pppuuxhOhMeCR9DEkEtMmwqtt
 
dpV+LZqDPIPGkD6GRCIBYgS+B14pWmZqDIlEIpFIJBKJRCKRSCQSiUQikUgk
 
Eoku4P8BJiQ4iQ==
 
"], {{0, 254.}, {264., 0}}, {0, 255},
 
ColorFunction->RGBColor,
 
ImageResolution->72],
 
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
 
Selectable->False],
 
DefaultBaseStyle->"ImageGraphics",
 
ImageSize->{40.73046875, Automatic},
 
ImageSizeRaw->{264., 254.},
 
PlotRange->{{0, 264.}, {0, 254.}}]), !(*
 
GraphicsBox[
 
TagBox[RasterBox[CompressedData["
 
1:eJztnQm8jNX/x+vfoleWVCK7a8mSiCxRkjVl30WWm+6VfYuLyBoi+xKSJaFI
 
EYok+xLZl8h6o5CU9r3z8/6+Xsf/MWbuOnOfmbnf9+t1izFz53nOOZ9zvst5
 
zjfi2a4Nov/vhhtu6Hnblf80iIyp1KNHZN+GGa/8pXGXnu3bdYl67skuL0S1
 
i+rx8LM3XXlxxpWf2Cs/N1/5MYqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqi
 
KIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIqiKIrr/Pvvv+b33383ly5d
 
Mt9884356quvzJkzZ8yFCxfMjz/+aP766y+3L1EJMP/995/0M/1Nv589e1bG
 
wddffy3j4rfffpNxovgX2v2PP/4wsbGxZtGiRea5554zDz30kMmePbvJnz+/
 
qV69uhk2bJjZsmWLuXz5srxfCT/Q1g8//CD9TH/XqFFD+j9XrlwyHqKiosyC
 
BQvM6dOnzZ9//un25YYN6OmXX34xmzZtMpGRkeaee+4xd955p7T7fffdZ/Ll
 
y2fuvfdekzFjRlOsWDHz6quvmnPnzqkOw4x//vlHbJ4pU6aY4sWLm7Rp05qs
 
WbNK/zMOcufObe666y4ZC08//bTZuHGjzNtK8sG2QH9NmzY1mTJlMpUqVTIT
 
JkwwR44cEZsE+2P16tWmbdu2okvmxcGDB5uLFy+6femKn2D9w+YcM2aMKVCg
 
gMmbN69p166d+fTTT2VdZBwwHkaPHm0efvhhGSd16tQRHapdmjyY+06ePGli
 
YmJkfmvZsqXZu3fvdWsc78MnGDVqlGiQfli4cKG8roQ++H6LFy82jz76qKyB
 
06ZNM7/++ut17+O1NWvWmNq1a5ucOXOarl27yrhQkg426NKlS03FihVN6dKl
 
xdb3BXo7deqU6du3r9go0dHR4j8qoY1zHs6RI4fp3Lmz2KS++Omnn8ySJUtk
 
zJQpU8bMnz9f/ZJk8N1335mxY8eaPHnyiK2Jrx0XtD/rX9myZU21atXERlVC
 
G+Lg69evN40aNTIlS5Y0c+fOjfP9aPbo0aOi1WzZspkBAwbIXK4kHux47Ih+
 
/fqJHco8iMbigv7asGGDadiwYYL6Swl+fv75Z1nXiAMkdF4lFjBy5EixR9u3
 
bx/nuqn4Bj97//79YlOyDuJvB+IzSnBDzOX111+XmHezZs3M7t27E/wZfEdi
 
eQn5jHI9qkEFnBpMqJ6S8hnlev7++29z6NAhsSXI/YwYMSLeOCd52V27dpk2
 
bdpI3mjcuHEpdLVKoEBPs2bNMiVKlBCfcMeOHfF+5vvvvzdTp041hQsXNi1a
 
tJB5WUk8xLLOnz9vhg4dKnHOLl26mG+//TbOz+B7f/DBB6ZKlSqmfPnyEs9W
 
Qhv6dOXKlebJJ580FSpUMO+9916ccU7+jVwi8XHyhD169JDYnpI0yAvNmTNH
 
7PqaNWtKfMzXWmg1yz4Z1sAmTZqoDRIG4F+QE2YfGv3KHrW4YnPkCNetW2fq
 
168v+2fYz4FNpSQNbMvPP/9c9qjh3/Xs2VPyE546RH/o9aOPPjK1atUyERER
 
YrsSJ1VCH/ZCkZcvVKiQqVy5suSM6Vvnemj3ch87dswMHDhQ9moQH9+2bZuL
 
Vx4esAebPGupUqVknxI2xuHDh6VfiFujPWwPbFDanJwQ+wU/++wzty9d8RNo
 
68CBA6Zjx44mS5YsYpcuW7ZM7B76n3GAvblv3z5ZJ1n/7r//fjNx4kSdh/0A
 
eULamr26tGvmzJll/wN2/muvvSb70/C7sVPoH3S4du1a3RsRZqAl9g3T1/h5
 
7BklV0HsmzWyd+/eskeR8fHAAw+YV155Rf1AP4KeiHVhg9SrV09yrzw/wbMS
 
PENBDp+42QsvvKAxsDCG9fDgwYOmf//+pmjRotLvPCvBGECX+CDs1WavVHz7
 
OZSkwZqIbYqPOHPmTDNkyBCZB999913ZK6p7tMMf+ywp/c2cTAzu5Zdflnwg
 
/oc+P6ooiqIoiqIo4YsvW5/X1Q9IHcTV1zoOAgfxFvYO8jwTMVLbztZHZx8b
 
Z2vps2LhDfs2yDmQr3Lm/ojX2VwxuWM9w8K/oDOeCZs8ebKcZ8BzvfbcLLtP
 
u3v37rKnl70ySnjCnjPOjeG8oGefffaaPTB2bzd7hcnTM08r/gMNssaRF7r7
 
7rtNr1695Kwn4P/sD2zQoIGcbzdv3jyXr1YJFMy3PDfB2ZZVq1Y1H3744dV/
 
s8/tct4F+2k4f1bxH6pBBVSD7qEaVEA16B6qQQVUg+6hGlRANegeqkEFVIPu
 
oRpUQDXoHqpBBVSD7qEaVEA16B6qQQVUg+6hGlRANegeqkEFVIPuoRpUQDXo
 
HqpBBVSD7qEaVEA16B6qQQVUg+6hGlRANegeqkEFVIPuoRpUQDXoHr40yOup
 
XYOp6Rwxbxq0968aDCyeGqQGGmf48HPu3DmzZs0aqTeXmjTIOXOcIcfYo7ZC
 
ajjn36lBzm6i1hZnqXF+E+epUe9ONRgYnBqkzgtnaq1atUrOVxs+fLjUeaQe
 
VmrQIGf2ob0vv/xSasK9+OKLcp4YdfeofxnOa6LVYNu2bU25cuWkthK1t1j/
 
Fi1aJPYRte9Ug/6HcXfmzBnTr18/c/PNN0u9HWrU33TTTSZNmjRSe4f5r2TJ
 
klK3NxzPlkRbnKdJO7z//vtS94vaU7feequ0B+c6UieauYrzVsNRi9z/1q1b
 
pb4ktZaoc3bLLbfIGODPjAHapH379tJO4dgGboCNRS2d7du3iw1y4403Xm3z
 
IkWKSE1C+oPXChYsKGdLcg5wuIxDW1+WM4zxezlHlRqzadOmldrEzDvURr3j
 
jjukBiNrADXDOeeWz4VDGzCnor+TJ09KvS3WQOZi+p3avNQbZDwwBmiHpk2b
 
ytmjqcVGDxTW5jp69Ki0O7Ym6x115h577DGpeUbdVepd4R9Se5X2z549u9gq
 
jNcLFy6E9Di08w9nGGN3YWvffvvtUn+RGNTbb78t8w01afk760CGDBnMgw8+
 
KHPR7t27xV8K1XFo5x/68ZNPPjEdOnSQe0yXLp0pXLiw6dSpk9m8ebM5dOiQ
 
GTdunKlQoYKMD2IGxGwYN8ePHw97G93foD1inbGxsWJbNWnSRLTFj63zSf1B
 
51n3jNPVq1ebZ555Rvooffr0Mj/iPzIOid2E0jikDRg3+HizZ8+W8cS4w86q
 
VKmSmTRpksSiLNwbMYkZM2aYihUryvtor8cffzwkxyHXyZnaxFp27twpdSax
 
d5h/WPtZ56g56ayzi92zZ88eqZVevHjxq7VhGzduLLY7tqlnDXvlWmzdCHxp
 
4i1RUVEma9asV/XE3zds2CDzojdszWxiMk888YTYJqwJ1EemjjYxDOqWB7Ov
 
aH0+1jbGTfPmza/WG2YNJP5y+PBhn5+nbTgLnjFbrFgxGYd8njWStTIUfEX6
 
h3764osvJN5CbQPsbsZCjRo1pNYn/ewL5potW7aIT2htdOI0rVq1knmazwZ7
 
G6Q01t4gxr5x40apK46dYf0dYg/Lly9PcG1jfhd6w1ZFf9gl2Cc1a9YU2y0Y
 
50OnzbV27Vrx6RhzrH3MP+3atZO28Zx/bG7M816wI4hdYLvhOzIXYR9go/P7
 
8S2DzUa38w/2zzvvvCO5JuYQ/I/y5ctLrV38koTMofwubB9qj7Rs2VJsd7RI
 
vKBHjx7SluHkLycV7t36O3v37pU8A5rB3mDeeuqpp8SOYu5ObDvxfuZD6yti
 
x7CW0BfkNfAtsGOwd9zsA2tzMV6wr1m/mH/QHvMPsc7FixdLG3nCWORz1ITG
 
LvWcV/gz44z1D3vMjkN+PzY6dlsw2OjOmBPzA/MG/Y/9Q835Ll26SDzOl/0T
 
F9ZGnzt3rqlVq5bMa7RB6dKlxb9m3IWyv5wcuGfsDea1N954Q/KtjDvWK2wP
 
cn6sZcnFOR/iKzIOWROIow0dOlRiOm71gW0DbMdp06ZJPIFxxzgh/oRvx/jx
 
Bde9cOFCWd+JTRCD8jav8D2s/eRs+L3Y6KwvxBbxK/EVuQ435iI7B+Ozk18n
 
lmTtnxYtWoj9423+SSy0Cb41tetZUxlnzMn4ztOnT3e1DVIaG285ffq0zO8N
 
GzaU8UB7EGMnx8rc5O+2sOOQdRW9Mw75TuKrjHX6gBhsSvSBbQPWL9sG2FvY
 
zNgBrIX4QvFdC2OTeA22KvMKcQjmroMHD3qdV1hH+L2MdfTH9+Er1q5dW2x0
 
9G73/wUaG3NinmUOrly5ssw/WbJkkfgTNe7imn+SCjn+/fv3i1+Nv2zj7KyR
 
zGcp2QZJIaHX5Wv/Iu2Oz8ceP/wS1iQbb3n++eclxoyvHEgYh8Q0iNtjj9AH
 
6BHfgxgs8aBA+evOmBNtQK4zV65coh9rcyWmDdAYsRvmcWKl6In5jD8zrsml
 
eYuFMsaw7bp16yb5VWujt27dWq6LmAVjNVBtYPcZ0N74+vQB101/vPTSS5Jn
 
CKQGrJ9C/hD7gbiNsw2wmbAn4qrzm9Dv8dd92PwoNl1ccwSv03fMwazrrP9O
 
iKksWLBA5h/sjbx580rcb8mSJeK3pBS2D4id0Qf46fQB+26IpRF7Za7wl69o
 
fT7uke/EF8M/dbYBMdCk2lxolrl90KBBYkswprFnyeksXbrUayyUPuV6VqxY
 
ITYfth9zAb5iTEyMxHPIC/izDazPx/4B9M/8Y+dg2n3Tpk3X1NUNNHZNwF/G
 
T6ENbP4L28jzWuwcyvjGZvLlv9h7RQOMeVurNjkwXukT7AN8Dl+/k9exddjD
 
yJjytCXQMHFl7pG1n/nbzT199AHzHX3AfEzcEC2yJjGe8RW55uTkMugn+uHA
 
gQPie9k4u405+asN6He+h/mDmIbdr4DGO3fuLHFA7pXr8fQV6SdsWnxFrsvm
 
c8h5Y9cmJ5/jjLtZn485GO0x55HnS+k52BNnG9SpU0f6iJg69+0ETeIn4Vev
 
XLlS9OsN5i1iu8x/aAF/P7kwd+GjYC8wf/nKEdh1rkyZMuJjYFc5oR/pC/wg
 
X9fvBrbNmB+qV68utilrCTESYiVcb2J9RafPh59Rt25daT98MGICjEVsRX/D
 
99JfjGtiquwZQovWV8QOp588NUUbcD3EpsuWLSvXSRugS64f/z2xfpJzbzl+
 
ODYy10LevFq1ajKn0+7BAlpk7afPnLl/C/9GvhIbBtuBedUbrFk8x0OfowXa
 
L7n4S4PBDus48z73yj0wBokR4CuyJ4P4f3x+ktPnw69gX4FdW5j/2evp3OMT
 
KNAUY4kxQ7yDuAP3wxzz5ptv+tQU98dcjz1qfUWunxwb+yYS4ita3wVfFZ+P
 
tY7vZ/zQrgMGDJDxG8x7JbyhGkwZGFvM3Vw7eXLrK0ZERJiuXbuKTe7NpnPu
 
M8CvIe6Gn0O+hRw5ezTQJP2TkjAfoCmeN7H7t1gb8X98xV+sXUsOtU2bNmLP
 
sn5xP8St42sDm+ejvfgs8w96xkbGF0xJn8+fqAZTFusr4tdi07EWoEV8WWf8
 
n/cxFvkz/iP5J96Dz8dYpx3wH2hDt0AbXB+6IB5tNYXPiKaIkeKPefMVWfvp
 
U+7D5rcT0gbsq8PnI9ZI7oV9L276fP4gmDSIT0e7e/7wOj5oOGjQgk134sQJ
 
iafY+D++EvYd8X/yvvhY7MNgLyM65T2PPPJIwHy+pGI1xZioV6+eaIo+LVWq
 
lOiGeJrVlBPagPwpviL35WwD/Dz8PdsG+I+0AT417cVnaINgzbclBqcGiWUz
 
33jTAXbUxx9/HBANMgdGRkbKd9Mnnj+8Pn78eNnrEC4atFg/CRvTxv8ZZ8TQ
 
8LHwGxnPzP/s2ycG6JmbCRaspugrnqtAU/hrxEmIDeIressr2jYgt+JsA3TJ
 
Z4m12Dbo06ePPG8VrG2QFKwGyd+gL2x5bzrAPsDnpk38rUGeVyanQ7+xl8Hz
 
h9eJ69Mv4aZBsDYd+Zno6Gh5XpZnRm+77Tbx+ci5M/8xD4YC+GXEh4i/YF+i
 
H/Iz+IrkDb09exlfGxCDCqU2SAxWg+QRmW/I33jTAes/cxT+i781yLkRzH34
 
5vjYnj+8jg/Ee8JRgxbsDfLeEydOlPsmboPdGUz5loRiNUX8hb3saApbkrme
 
9RyNMvY8fUVnG2Cb4VuGahskFKtB8po29+pLB7wHez0QtihxMuwR/CDPH14n
 
rxuOtqgn2GrEOfF/sMWIwTthvFr/IBR8IWf8xT5fwLrIXI/Nap+9dN6LbQP2
 
GtAG5CTDGactSi6fPL03HRCrwTcOhC2amuKi8RGXBm18Ct+AeI7nfotgxu7r
 
5rkefF38RPxFdMn+cvYNWVKrBoMhLqoajFuD+ELMkYxb8vuh2A7k73n2kudd
 
ec4L/wc/x3mfqkHVoJvEpUHWPfbV8FwUMVP6IxTB7mTccZ/k29njw75Ti2pQ
 
NegmqUGD8aEaTHkNEu9kLoxLg3wfe35Vg6rBcMNqkPwb+RtfGsSOJ87MPgi0
 
4A8NEm9mHwXxZ/KzvmIMvM5Y5EwzrhF/IlxRDaY+DRKPYg8Dz9PwvCOxK2+g
 
QZ4hY48we6c8Y+ZJgRgDfgDPVHE2XFzPDzI3sIfLnj0brqgGU58G7Z4G1kL2
 
EbOHwRv2OTD2yKIF9s0o/kc1mPo0qAQXqkHVoOIuqkHVoOIuqkHVoOIuqkHV
 
oOIuqkHVoOIuqkHVoOIuqkHVoOIuqkHVoOIuqsHrNcg9K0pKoRpUDSruohpU
 
DSruohpUDSruohpUDSruohpUDSruohpUDSruohpUDSruohpUDSruohpUDSru
 
ohpUDSruohpUDSrukto0yJnbnrVrVIOKm6QWDaI7atpzvi21wZ3nWqoGFTeJ
 
T4M8x0NNVM54DUUNoj3OyUR3nNU8bdo0OVeTGmgW1aDiJnFpkH/jLOSmTZvK
 
eePbtm1z8UoTD7UIqVvAec1Tp06VuvPUGqHuEmfbWlSDipvEpUFbTxMdUrPc
 
V32OYIO6iZzTfurUKbNo0SKZQ6glS/1Bznen3gG1dy2qQcVNPDXI+AuFerve
 
sD4f8wa1Sqg5SG0R6i4XK1ZM6p5t3bpV3uPE1ll0toGipBRocNWqVTL+qP09
 
adIkqT9AHdtQ0aL1+S5dumR27NhhRo4caUqXLm3Spk0rtdap77V06dLr1nE+
 
R2yGeiIzZ84U/VGzV8+yUFIS6n9QB6dRo0ayXpQsWdIMHz7c7N69W+rzYI8G
 
sxa5PmJH1A6iLgm1sjJkyGCyZcsmf548ebLYnc57sJolRkrtk1GjRkm9enxF
 
ag6HYuxJCV3wnVj35s6dK7GKrFmzSn3GatWqmVmzZpkjR46Ircb7ggnr88XG
 
xsoaFxkZaXLlyiXXTr3KgQMHSp0gtObEapb74v7QHHMPNbK5Z+KmxFAVJSVh
 
XWA93L9/v4xd1kLiF+ixefPmZtmyZTLW8aPcXhP5fuxk5o1169aZPn36SD3Z
 
9OnTm8KFC5u2bduKbc39OPHUbJs2bUR3aLZUqVKmb9++Zt++ffK7FcUtGN/4
 
TNR97NChg8QzsM/y5csn8Qxs1vPnz7viK1r7EfsYO3ns2LGmfPnyJl26dCZ3
 
7tymQYMGZt68eeITen4On4/rRrO9e/eW+0KzRYoUMdHR0RK/wS9WlGCBNYO6
 
4cQmmjRpImMcLbI+jhgxwuzdu9dcvnxZ7LqUuh7s4WPHjonO6tevbzJnziw/
 
7B8YM2aMrG/efD6rWXw+bFS0FxERYRo3biy1nbE73V7bFcUXrHcnTpwwU6ZM
 
MVWrVhXbLVOmTJJHQwvsNWH9CJSvyO/Fpjx79qzkTzp27Cj6yZgxoylRooTk
 
Hsg1ePP50CzXZzWLzWl9vvHjx0t92WDzcRXFG6wR+FG7du0y/fr1M8WLF5d8
 
d/bs2U3r1q0lr3bmzBmx9/y1ntg17OLFi2bz5s1m0KBBsgajvYIFC8r34qOi
 
MydWs1zP8uXLTVRUlMmZM6d8js/36tXL7Ny5U30+JSRBF9ifxO2Je+TPn1/s
 
00KFCpmYmBizZcsWsV+T6yva/WXENNlfVqVKFVnDcuTIYWrWrCl5PL7H89r4
 
Xl7HZx0wYMDVOA3XR8yUuYJ4qKKEOqw1xDfwperVqyf5ALRYtmxZ8cuILSYl
 
r2jjltiIixcvlrw6OT7is+TOhwwZYg4dOnTNZ5w+3549e8y4cePkveQH8+TJ
 
IzbonDlzJIaqKOEGtif+Fr6VzStmyZJFfEXGPfGThOYV0StrGGts9+7dxd5E
 
1+wv69Spk8RpPe1HG6fhGsht1q1bV3xVfD72Zo8ePVr+TX0+JZxhHUIH+Fj4
 
iuTZWLfwwfDZVqxYIXtU4vMVsRHx74hx4ruxv6xZs2ay1uITen4neUriNPx+
 
cgt8H/Yq+9Pw+XhGyfl8oKKEO+gCe5DnK/AVCxQoIOtY0aJFxTfbvn27aAm7
 
0ZsW8TNZO8uVKyf7yyZMmCA2qed3sBbye/A9Bw8eLPtbsTtZN/lenu3gdylK
 
agWbkvUJPbEHjDgK6xP7oCdOnCjP8aERT/uQNQvblf0txGK8/V4+xz4e9n9W
 
rFhR9pex/tWuXdvMmDHjmmeRFCW1g6YOHz4seXHOwcBH4wef7a233pKcY0Ly
 
ivw77zt+/LiZP3++5NWxdcnNo8Nhw4bJ96jPpyjXY31Fcug9e/YUu5GYCfFK
 
fDjWPNYub7kMp89Hbp64jN2rQ26+W7duYo967glVFOV6WKPYD0b8hDgNe0/J
 
8eMr9u/fX573Y4+n9RXt2S/4kOTmiY0Sp2GPZ6tWrWS/teeeUEVR4gdt8azs
 
7NmzxSbFV2RdJK/BGUvk/sg78v/p06fLnjK0x/vq1KkjPh97QhVFSR74isRd
 
hg4dKnFQfDt8RfL9+HecHcVr+H08F2GfA1SfT1H8BzYnOcFNmzaZzp07y74y
 
1rw0adJIHNXm5tevX3/dnlBFUfwHOQf2kXHOIHs6yWHgM3IWmueeUEVRAgda
 
JM5CzkK1pyiKoiiKoiiKoiiKoiiKoiiKoiiKoiiK8v/8DyvCCzs=
 
"], {{0, 154.}, {
 
           225., 0}}, {0, 255},
 
ColorFunction->RGBColor,
 
ImageResolution->72],
 
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
 
Selectable->False],
 
DefaultBaseStyle->"ImageGraphics",
 
ImageSizeRaw->{225., 154.},
 
PlotRange->{{0, 225.}, {0, 154.}}]), !(*
 
GraphicsBox[
 
TagBox[RasterBox[CompressedData["
 
1:eJzt3Qm8z2X6//FZ/vObJVmzbxHZ4siu7FkqQkKiLKeyRLZIZQlpISqiRWWp
 
VKijVBJZQrYip5SQfd/DMTXTzFy/ed/zuM3356+ZzjfH59zH6/l4nBlLuM/n
 
nM/9uT/Xfd3XVSSxV4vOv/nVr351zx/++T8tOg2o27dvp/tvyvrPn7TqeU+3
 
Lj3vvOO6nv3u7HJn32qJv/3nL7b79a9+1f+fH//vnz82AAAAAAAAAAAAAAAA
 
AAAAAAAAAAAAAAAA4Bz4xz/+4T4AAGH78ccfbefOnbZq1So7dOhQ1MMBAMTp
 
73//u+3atcvGjBljdevWtaeeesq+//77qIcFAIiD5vR9+/bZiBEjLEuWLFa/
 
fn376KOPoh4WACBOf/7zn23evHluPs+TJ4/179/fjh07FvWwAABx8Gt1xV8K
 
FSpkVapUsenTp7NnCgCB+stf/mKrV6+2Nm3aWLZs2axDhw62efPmqIcFAIiD
 
1uRHjx61KVOmWOnSpa1kyZI2fvx4lxMDAAiP5u+vv/7a7rrrLrdf2rx5c7d2
 
BwCER2v1EydO2KxZs6x69epWuHBhGz58uNtDBQCER/ulO3bssGHDhlnu3Lmt
 
Tp06NmfOHPZLASBQOnO0aNEia9y4seXKlct69Ohhu3fvjnpYAIA4aK1+4MAB
 
e/rpp61IkSJWvnx5mzp1Kmt1AAjUX//6V1uzZo3deuutLrexXbt2bv8UABAe
 
rcl1lnTatGmWkJBgxYsXt1GjRllKSkrUQwMAxOFvf/ubO3fUr18/u+SSS+za
 
a6+1xYsXRz0sAECcTp065fJeateubfnz57cBAwZQjxcAAqX9UuW8PProo5Yv
 
Xz676qqrLCkpif1SAAjUDz/8YCtWrLBWrVq53MYuXbrY9u3box4WACAOvhbM
 
iy++6PZKy5Yta88995yr+wUACI9qwaxfv96t0bNnz2433XSTy3UEAIRHa/Xj
 
x4/bjBkzrGLFiu4s0sMPP2wnT56MemgAgDgot3Hr1q32wAMPWM6cOa1Bgwb0
 
uQOAgKlG44IFC+y6666zvHnzutx11REAAITH14IZO3asFSxY0CpXruzOmmoN
 
DwAIj2rBfPbZZ9a2bVu3X9q+fXvbuHFj1MMCAMTB14JRnzv1uNPHuHHjXI1e
 
AEB4lNu4YcMGV1tddRubNWtmK1eujHpYAIA4aK2uPMbZs2dbjRo1XJ+7oUOH
 
unxHAEB4fC0Y5amrz53qfL333nvUggGAQKkWzNKlS61p06auHm+3bt3ocwcA
 
gdKaXLV3J0yY4OIv6nOnvVPF2wEA4VFu47p166xjx46WNWtWl+Oo2jAAgPD4
 
WjCvv/6663OnWjCPPPKIO3MKAAiPrwWjPkhaq6t2wCeffBL1sAAAcdJaXTXW
 
1Q9JtRvfeOONqIcEAIiD9kS//vpr6969u6sXcOONN1pycnLUwwIAxEFr9KlT
 
p1qxYsWsXLlyNnHiRGoFAECA1MNu+fLl1qJFC5ejnpiYaNu2bYt6WACAVFLO
 
i2rvjhkzxtVTr1atmr355pvkpwNAgBRfmTdvntWpU8fN6ffcc487gwQACIvy
 
F7ds2WL333+/5ciRw+rXr2+LFy+m3gsABEh1GRVnUT2Ayy+/3EaPHm0pKSlR
 
DwsAkEqqB7B27Vrr0KGDy11s3bo19QAAIEC+z9ELL7xwum7XSy+95Go0AgDC
 
orl7yZIldsMNN1iuXLmsa9eutmvXrqiHBQBIJfXB2LNnjz366KNuPlePI/U6
 
0n4pACAsqrU4Z84cN5cXKlTIhgwZ4uIwAICw+Jou6iutfdHrr7/eVqxYEfWw
 
AABxOHHihL322mtWunRpK1mypI0dO5Ya6QAQIOUufvrpp66HkWq6tGvXzjZu
 
3Bj1sAAAqaTcxcOHD9v48eOtQIECrjb6K6+84uZ5AEBYlLuoM//qXaSaLn37
 
9nV1uwAAYfE1XR544AEXc6ldu7bNnTuXmi4AEKBTp07ZO++8Y5UrV3a9ox96
 
6CHX/wIAEBblLn755ZfWpUsXV3exWbNmtmbNmqiHBQBIJcVWjhw54mq6XHbZ
 
ZS5/ccKECfSjA4AAqR+dzhO1atXKcubMaXfeeSc1XQAgQKrpsnv3bnvkkUcs
 
T548VqVKFZs5c6b7dQBAWBRfmT9/vtWrV8/y589vAwYMcHEYAEBYlLu4efNm
 
69+/v4u5qKbL8uXLyV0EgACppsvrr79uZcqUsaJFi9rIkSOp6QIAAdJZ/3Xr
 
1lliYqLLXVRtF2q6AEB4FFs5ePCgq+mifnTlypVz/eiUow4ACItyF5ctW+bO
 
FSmO3q1bN9u3b1/UwwIApJJyFHfu3GnDhw93uYvUdAGAcGkPVD1FVdNFtXQH
 
Dhzo9koBAGHxa/TBgwdb1qxZXT3dVatWRT0sAEAcNKcrbq56i5kyZbKaNWu6
 
HtIAgDAp9qJzow0aNHDx9H79+tmxY8eiHhYAIA5aq+/fv9+eeOIJK1iwoFWq
 
VMmdO2KPFADCpFzG1atXu3NG2bJlsw4dOrgaAQCA8GhNrnjL1KlTXa30EiVK
 
2Lhx4zhzBACB0vy9YcMG6969u2XOnNmdP9LaHQAQHq3VT5486fqPXn311Vao
 
UCEbNmwYNbwAIFBn5qvrTOn7778f9bAAAHFST4xFixa580e5c+e23r172+HD
 
h6MeFgAgDlqrq0ajekoXKVLEKlSoYK+88gq5jQAQKNVSX7Nmjd12220uBtOu
 
XTu3fwoACI/W5N99951NmzbNEhISrFixYu5MknrbAQDCo/l706ZNLp6eJUsW
 
F19funRp1MMCAMQpJSXF5b3UqlXL8ufPb4MGDXL5jgCA8Gi/dNeuXa5fRvbs
 
2V3e+ttvvx31sAAAcVJu45IlS+yGG25wfe169Ojhan4BAMKj/VLlp0+cONGK
 
Fy/u+k9PmjSJ3EYACJRyG5OTky0xMdHlNrZq1crWrVsX9bAAAHHQmvz48eM2
 
Y8YMq1ixojuL9Nhjj7m5HgAQHuU2fvvtt9a/f3+3VldfpAULFkQ9LABAnE6d
 
OmVz5861evXqWd68ee2+++5z63cAQHiU27h3714bOXKkq+9VrVo1e/PNN9kv
 
BYBA/fDDD/bJJ59YixYtLEeOHNa5c2eXww4ACI/W5EePHrXJkydbyZIlrUyZ
 
Mvb888+7NTwAIDzqc7d+/Xrr0qWL2y9t3rw5fe4AIFBaq584ccKSkpKsatWq
 
VrhwYRsxYoT95S9/iXpoAIA4KLdx27ZtNnDgQBdXVy7Mhx9+GPWwAABxUv/p
 
+fPnW8OGDV0eTN++fe3IkSNRDwsAEAfti6qe15gxYyxfvnxWuXJle/3118lt
 
BIBAKYau/dE2bdpYtmzZrFOnTrZly5aohwUAiIPW5MeOHbOXX37Z5TUqv3H8
 
+PEuNwYAEB7N3+pBfffdd7vcRtVaX758edTDAgDEwfek1jkk1WxUjXX9GAAQ
 
Ht+PWnkv6nHXuHFjW7FiRdTDAgDEQX2np0+fbmXLlrVixYrZ448/7vIcAQBh
 
UV8M9TxSvssll1xit956q23evDnqYQEAUklx9IMHD9rYsWMtf/78lpCQ4OLo
 
5LwAQHhUd3fp0qUuz0Vr9O7du9uBAweiHhYAIJV0hnTHjh02dOhQy5kzp9Ws
 
WdPef/99zpACQIBSUlJcXcYKFSq4uItqealWIwAgLIqXf/PNN9azZ09XD+DG
 
G290+6QAgLD480WTJk1y54tKlChhTz31FLXTASBAyl387LPPrG3btm6N3rFj
 
R9u+fXvUwwIApJLW6MpreeKJJyxv3rxWqVIlV1tX50gBAGH5/vvvXS+jOnXq
 
WK5cuaxXr1526NChqIcFAEglrcUVYxk0aJCr6dKoUSNbtmwZuYsAECBf0+WK
 
K66wQoUK2fDhw6npAgABUu7iV199ZV27dnX10Vu2bOl+DgAIi2IrR48etYkT
 
J9qll15q5cuXdzVdlP8CAAiL8s4VN2/atKmLo99xxx22Z8+eqIcFAEgl1XTZ
 
t2+fjRw50tXo8jVdyF0EgPBoD1RzePXq1S1Pnjx27733ujOkAICwaC2+ZcsW
 
N4/rvOj1119vq1atIncRAAKkGovTpk2zUqVKna7pQu4iAITH13Rp166dZcmS
 
xW655Ra3ZgcAhEWxlcOHD9v48eMtX758VrlyZVfThX50ABAe9aNbtGiRNWzY
 
0OW6dOvWjX50ABAg5S7u3bvXHn74YcuRI4fVrVvX5s+f734dABCWU6dO2dtv
 
v+1q6OrMqGq60I8OAMLja7rcddddrqZLs2bNXD86chcBICy+H92UKVOsWLFi
 
rvbic88952LrAICwqKbLypUrrVWrVm6Nftttt9mOHTuiHhYAIJW0/6maXKrp
 
on501apVszfffJOaLgAQIN+PTvW5lI/ev39/+tEBQIBicxdV06VBgwb28ccf
 
sy8KAAHSnL5//343p2fKlMnq1atnCxcujHpYAIA4KSf9gw8+sNq1a1uBAgVc
 
D2nq6QJAmHz85bHHHrNcuXLZVVddZUlJScRfACBQykP/5JNPrHnz5q4/3Z13
 
3mm7du2KelgAgDhoTX7kyBF3zkg1AcqWLWsvvPACtRgBIFCav7/88kvXQ1rn
 
jm6++Wb3cwBAeLRWV72umTNnWsWKFe2yyy5z55DobQQAYdJ+qWoCKPfF56t/
 
9NFHUQ8LABAnrcvnzZtn11xzjeXOndv69Onj+h4BAMLjzyE98cQTrlZAlSpV
 
bPr06eQ2AkCg1GN6zZo1duutt7oYTKdOnWzbtm1RDwsAEAdfT/3ll1+2EiVK
 
uJrqWreHUqtR47/Q3yu4BlwDIJbm740bN1qvXr0sS5Ys1rRpU1u9enXUw/qP
 
NGbVlPz000/de4b2Bi60e9pfg88++8zWrl17QV8D9QRYsWKFpaSkRD0kIF3Q
 
vaD+pKqprlowQ4YMSZf3h/YAjh075urW3HLLLa5PU9WqVe2+++6zzz///II4
 
OxV7Ddq2bXvWa5DR53Zdg+PHj9uSJUtcD8Yrr7zS2rRp434O4F/3iGoEDBs2
 
zNUMqFOnjpsz0gvNUar/rvcHvU+UKVPGLr74Yvvd735nf/jDHyxnzpxWt25d
 
Gz9+vB04cMB9PhmNroFqO2jeHjBgwE9egyeffNK2b9+eYa+BenWpn+6DDz5o
 
FSpUcN+vefLksa5du9qmTZuiHiKQbmjOXLp0qes5rfnh7rvvdnkxUdM+ru5V
 
1R5Tbo7uYZ9TP3bsWFc/uHz58vbHP/7RChUqZC1btnT9m3SuKqOsV7X21t71
 
U0895dbkl1xyyf+5Bo888ohbq2pu13uWvobTpk1zdSAy0jXQmQrVsrj22mtd
 
HTqdg7766qttwoQJ7jmm+R7Av/haMM8884wVLFjQ1YJ58cUXI5sTdA/v3r3b
 
Jk+e7O5hrcW0LtW8rrlN9QwUgzh48KCrBa/8etWwUX34UqVKuXWb3sW1tg11
 
XlO8WO8dr7/+ul1//fWWP3/+09dA6/GzXYMiRYrYRRddZJdffrnLY9IZhNCv
 
gWLms2fPdrEmfW9qLlfMSWv1devWuWsQ6ucHpCWtiXWPdOzY0d03illv2LDh
 
vI5BMQM9W9577z2XY6k5SvOY8nIUM1ZdSd3DPrbgYxJaw2l9rjHrDJXWsZr7
 
tDewfv36YHJ5RJ+b3jMWLFhg7du3d/UbdA1Kliz5X6/BW2+95eY+XQN9DStV
 
qmSDBw92839I10Cf08mTJ2358uXWs2dP95zW56N3sS5dutiiRYvcXJ8RY0zA
 
uXJmLZiiRYvaqFGjzsveo4+ZK16sXqmlS5d297BiCZrX3n//fbdm1XPnp/68
 
+n5888039vzzz1utWrVcPEZzW/369d37uXpsp+c5wF8D5bEoZq53JeUi6XNo
 
3bq1e8793GugGIViM/7P+2ugd5/0fg30fPr6669dXE3P5Rw5crh4oGpE67mt
 
r+NPXQMA/5fWclu2bHHzquYDzQVpXQtG96f+TeXGq1eH4sX6uO6661zuvGKl
 
mut+7vi1htV+qvZ89WzwsfabbrrJzQla/6W3d3V/DRRTUYxYn7+uv/Y9p0yZ
 
4n4vNddA5w6U56l9CMXaFY9J79dAawft1b/00kvueaRnka6B9hAUb9u8ebN7
 
ZgFIHd03H374oTVs2NDFZbUPlxb8e4HWn40bN3Y1CrQ21z08evRoFzOJd+7R
 
/KA1reLJ3bt3d3FYxdo1x/fo0cPlM2tPLep5TWtm1dlRzKRJkyaWN29eN07N
 
w3pHSk5O/kXXQLF2xXCUL6QYjt9v6Ny5s4tfpJdroHibcq30Tla4cOHT8bYH
 
HnjAPZuImQPx8/OM9qU0rygWkBY05ygvTXOs5nLFi/V+oBjq0aNHf3H817/H
 
a52vWjbKidH6V7kz1atXt4ceesidt4oiFuHjxdrHVb8pneHNnDmz+//evXu7
 
Xz+X12Dnzp3uuaEYTux+g2Lt2kPRv3O+50z9ezoHsWrVKvd1176nj7clJiba
 
/Pnz3TMppH0AIL3SPKf7TXO75oS0+jf097/zzjs2fPhwt05T/uS5jpX6uUPP
 
D+X1KNau9apyaRo1auTyezR3nI85zcfMtWep/VvlYWp+1fpc+7u6FuobmxbX
 
QO9feoYp1q4zCLGxdl0X7bGej+ebf85oLHof8/E2xcz1vvbaa6+5Z1Bafd8B
 
ODd0L585Z8Q+O35uvDheWu9p7av3gIEDB7q4kmLtyq3x82lanrHXe4neGTR/
 
ak7VHKYYQ40aNdxz5dtvv03zM/663oq1q6bAo48+auXKlXPXQHmgWsMr1q5r
 
lFZj0Ndg37599uqrr7r8TD3L9H6id4Zx48a5/V19PxBnAdIv3Z+KhypGP2nS
 
JPfjKGkNrHlF7wXq4ac4vuYVvfvrrNWyZcvO6Rl7zWN6D9B8eeONN57OM1de
 
i+I/im2d7zNSPtaur4ly+TWna0zab+jWrZstXrzYrevP1Zh8TQP9e7fddpvb
 
r9W/p1hTv379XPyFmDkQBt3Pyj9TXovmUMUWouZjIFu3bnVnLlW7TLFcxdoV
 
C1C+iH7vl8QifMxH7wXap/Uxc82fqlOiPUq9n0QVLz5zv0HPG7076Br43P4v
 
vvjiF8WBfMxH7wWKmWvfU9dZ63OdP1COquJtF0KtHiBq/p7Xu7g+fio24udH
 
5S6otlLsHKXf0/2q+Kje9du1a+d+rLkyPeRJawzaq9Tcpfwe5RH+6U9/cmt3
 
xXaVR5jaWIS/borfjxgxwp370Typ2LWvXaCcvfRylt0/e5QT/uyzz1rNmjXd
 
fkNsrF3jTe3XS88CxZMUU9Eehq9poHyqqVOnpipHFcAvp/tNuektWrRw+cK6
 
t892D2odlpSU5Prg3XvvvafPteicn961tQ+mNZ/mSJ1l0pluzZ/6M4qBpAd6
 
DumZpLiL8ucUg1BOt9bWyq+bM2fOzzpj73OsFR/XfOhzTGrXru3mS+0LnsuY
 
xrnk4yOKgwwdOtRdAz3fFCdp1aqVzZo162fFR3xNgxkzZrjaMz62pZpbY8aM
 
cc+O9JgfD2R02q/TvOvvba2vlOt85r2o+1NzmN6nb775Zhez0H2tulM6Q6Pc
 
Eu0Jak9S97d+rFiH8ug0x6UXvu6fnjOaw5VPp7w6zUcJCQmunorOMmnuO/Ma
 
+Bzrd999181/+nPKK1HMXGeflGOtvcn08G7y3/jcfuUSKkakz0XrdsVNlNeu
 
2gRn28v1+6+KKSnGpjxzXTudR77nnnvctdM7TwjXAMiIYuf0X//61+7dWftn
 
WofGOtuc7uMPmh+1Lvv444/dfa25XD/WXK6/Jz2+e2vs+tx9rF01xDSn6Yy6
 
clRGjhzpYgp+bte6W/Ocro3mPc1jOuOkvHM9A/W+ElqOdWwNGdWK0PlTvW8o
 
Fl65cmUbNGiQqwXk89p1vZTnrnwi1QHWf+trGiifSN8HoV2DC4HPRTvbOuVC
 
cSFdg9g5/be//a2r5ao5S3GT2Nzhs83psXStFI/RvqP2xfTjEPhaWspLefzx
 
x935Vr2vKG9FzybFhPV7OpelPUXNY9pj1O+plqLmw9BzrH2sXfO3Ym/ab1BM
 
SvO1ajc899xz7kyuYuY6x+VrGuhdTGf8VdNA30dIX2L3fNR3QB9+nXIh0Xu5
 
ak7oXlZs1Ne6y6hzu5/TFXfQeXLFy/25ENVa937OnK68F8VSb7/9dvfjkCgW
 
obW28vv0rqEYktbtyl9RbEVnl7R+Vb6M5jbNfxktx9rH2tUvUOfD9GzXNdDz
 
TdfD1zTQ9dC+sO6NjFTDPiPx5ySefvpptx+ur52+jnpGKydAuVgZ/eumeVvz
 
kGp5K6as+KI+VF9J93A8OQEh8HO6ao8ob0F18lSTRHOYYsvKb5b/NqeLciAU
 
o9XaNcSaej7Wru8D1UxQ/o7Wqnp30fNOewOKF8fWwM2IfF679s6Vn6lroF5L
 
ip2rxoPyNrWvkJGvQaj8OQnd04qJ6X7VO5diivo6+vN3+t6eO3duhluXiO97
 
qO9fxQwUI9U10PulfqxroP9XrFE5ARltLz92TlcOh+KiEydOdHteWo/pjLnm
 
558zp2cUPnas91T1cFX9WvWj0L1yoeRY++ebclJVf03rPeWZ69zBhXINQuL3
 
fNSLW8/h4sWLu/iY8pm0B646d7q3O3To4PpH+Rwl1epXbDE91Hn7pfx9q89H
 
uXna89E10PuJPm/dy3qO6cyhrouvdafro72yjHANJHZO1/uJYg/a29QaXc81
 
xY0VS72Q5nRPz3tdHz3z00ue+fnmY7LKdUmPe9341/uxYoF6x9Z+h85JKH6q
 
dajmMT2H9f2r72XtfbzyyisuJ0BnfPXfKQdXuWvnqxZQWvDnY7QfpPio3ks0
 
n9erV899vsrP0/evPhSTUg6uzt9pXtcemfbR1B9Svxf6Pv+Zc7pi6Po1vbfo
 
6645XOe6dU0utDkdSM9i+x4qTu77t1arVs29V+kePXPv2ucEKH9J+Qy+FpDv
 
86v8p7SsBXSu+RqBmsO0/lQeteIs2h9UXoP2fM6MrcTW+9M7uHICfv/737u5
 
TddRtU1CugZnOtucruukOIOeearHra+78mAUk2FOB6KluSY2Xqz5WLEU7Wlr
 
z0fnpf/bubHYnAC9k2uvJLbPr87lpefcED8vK4agWIrvU6w4ufKNf04tb99b
 
R+fvdAZRf4ffb1BvT53BSK9nB0Xj8h+xzjani77misGozrfe5ZQHo689czoQ
 
DV+fQ3O2zgioHl1svFj7Hanp3+r3TJR3rPW5YhG+toPW+qo9p5hOeorH+Fig
 
xqXcK9Wx1vykWIvOwiu3QTkOqdnz0X/rzyAqZ0/XQM9I/d2qX+TrIaWnuV3j
 
UaxJY9acHZuT8lNzuugZpf0xncHRNdOzXF9v5nTg/NK8o/inz030ddh0z6r3
 
4y852xd7PkFnEXwtIOW+6e9X71/F5KOe03xuovLMFRdWrEl7Anr++Nz7X3IN
 
9Ge136DcR+V065yK5nf9WDEaX8MqSr6Ota9JqHNFeg7FntX/T3O6xq8/r5xz
 
5UH95je/cbEq5nTg/NA9qBiC1lba8/S16JWzorPOPl58rv4t3+c3thaQYhFt
 
27Z1a8IockPOrOGsHHPN5crtUcxEPeu1h38uxuXzILXfoOurd6Ezcx/P1b+V
 
Gj6vSfOz6pkoJu7jbTorqTF7/2lOF63p9e6h2h46Z6qvMXM6kLb8Pax4seLD
 
/h72ZwQU7z4XfQ/PxtcCUt6f1oB+DlVus2Kxvh5SWvO5iarhPGDAAPfvK9ak
 
55rmdo0vrfoe6u9UHEt7FrH1kGL7L2hdfz7mdj1HfbxN8SBfx7pNmzYur0nj
 
jB2HrpmePaqlqPcZjTWW76mpdYLeyfS1Vb8gvQcCOPe0jtJZdq0TtdbSPayY
 
p84C6l5Ni76HZ/KxCN3n6jOofBBfD0l5Inp3Vxwkreb22HOw+vd8j2HVClTc
 
4XzU5Ijt86va2b4eksaheI/i+fo6pdU18LEm1d9Qvqnf61B+pn7tbHlNomun
 
canPmNbrZzvT7/OF9MxS3ErvYHr/AHDu6B7WfK14sd6ZFe/08WLloG3atOm8
 
19XxazrFIlRP29dD0rpVNZY1v+q9/1z2C9M7gvZstefpa6bq2ab88bPlJqY1
 
/86k3Efl/+kMgJ5vypu84YYb3Nx5Lq+BjzVpHa38Ut8vTPmHOoOQnJz8H2ty
 
6Nf9OVHtk/zUe4z+HT23NXZ9fvrv0kvPCyBksfWLFetQ7FZzhq9f7Gs4R7lH
 
qbWf1nVLlixx51VU/0dzu2Laqs2s9/tfkhvi3wt0Dla5lPp7NZcrlt+zZ08X
 
E1Y9iijPA52t17H2FzXWTp06ubrV5+IaKLdS8R5f/1U5loq/qf5rWl0DxXd0
 
/lbvX4rnXKhnLIFfwt/DWnfpjL5ywxVnUT6H6rHovVhr1vRyrtHnPupdQjmD
 
2lfTePWh2K3vlRBPryzlm2ivT3u/ii/oGii3Uut15Wmkp/pRvtex+ijofIDy
 
gxTn17uE6lOrh3q810DvQv4a6EMxL10DXfO0jDVpPa+zVr4Pver4Afj5fG6i
 
YpmqWaw4teZG1QxULp1iuOl1reT3LhUL0jygOlFasyu/0tc8VP/Zn9MrS/+d
 
zu4rXzA21qSauIoJKyaQHsXWhFKs7FxcA98zzV8D5U/6nmlpTWsLxdQVV1JM
 
6f777z9n+VRARub3pvR+q1ipz030sVLliIdyL/m8P8WG1OdL7xmqYar4r3Iy
 
tI49W91H/VzxYMWadF4z9gyrr316LuPTaSm2/4J6Met9xdda0DXQ+8zZ4v8/
 
dQ3UR1OxrfN9DXz/C50z0x6w5nbtrwI4O7/XqPp/ykX0sVLd+126dHH3tmKl
 
IcxjZ4qtzay4r6+zr/x2fa6an3yc2Z+D9f2AFbNQ7EKxJuWfKy8vxLqfvtaC
 
6rfqGmitq/X2z70GWp/rDIDyMxVvi+IaKLajvQLl92he176Gr7UO4N90f+od
 
XbmJlSpVOt0rS3kjb7311um6iSGL7YOommKqJaJ5XXODzqGrXpj2UXVO1efl
 
aS5TvEG5khmlX9iZuY++7qPyMbWO1zXQuVzF23wNAvWtUG5i1NdA49dzSfFA
 
1ZtQrWLV+Eov+zlAeqBYqNZePjcxtleW9tIyWs+/2JqHyi1X7qNiEdrzVFzB
 
r18Va9Icpz7GGa0vh899VBxN86PP//ypa7B+/fp00y9M6w/li6rPsp65enfQ
 
9ymAf8coFWv2Z9m193Qh9MryNQ+Vm6i8P81l6pWlvAqdw1QMKqP3yvLXQGeB
 
lQ+jr////M//pOtr4OP8es/QO6VySfXcCf0dCjgXYnsPaV2uvIKoYqVR0eeq
 
vA7tF6hnmmpHprfcxLSmz9VfA/WgSO/XQM8YneFVfq3WIg0aNHC58QD+HWNV
 
DsOFutaJPdfINQjjGigmqDNUms+1h62aw7F1wgAA4fA1ebWvr73cypUru73v
 
9BDzBwCknnKxVKdA54WVu6O+K8rfAgCER2ty1beZMmWKOw+mMxXKZSK3EQDC
 
pD1u5Zuqppj2S5s3b+7q2QMAwqTzA++8846rF6CaocOHDw9inxcA8P/TfqnO
 
xmou17k5nYFVXi4AIEyqUaP8etV8UF2L7t27u5oWAIDwaL9U9bxU60A1JNUX
 
VXun5DYCQJh0Zkp1ldUHRHWL9P/UggGAMGlNrrOkqqOp+mOXXXaZO5OU0erQ
 
AcCFQrnpOnekvh3qzaX4umquAwDCE1trVGdL1adPvVAAAOFR/otqe9WrV8/V
 
9urTp4/rowEACIviLuqLrnr4ymds1KiRLVmyhNwXAAiQ6gRPnz7dEhIS3P6o
 
+hFq3Q4ACIvyGJOTk+322293PWZbtWrletwBAMKi2Ip67Kk3tnrZKY9RPavS
 
a58mAMBPUx31ZcuWuZqM6o9xxx132I4dO6IeFgAglZS7uGfPHhc7V57LVVdd
 
ZUlJSdRQB4AAaQ907ty5VqtWLcufP78NGDDAxWEAAGHRWnzz5s127733upiL
 
zoyuXLmS3EUACIyv7TJt2jQrU6aMFS9e3MaMGUMvDAAIkHJa1q5da+3bt3e5
 
i7fccgs1GAEgQFqjHz582CZMmGCFChU6XSud3EUACI/iKzrz36RJE8uVKxc9
 
jQAgUL7u4ogRI9x8XqNGDZs9e7b7dQBAWNTf4v3337fq1au7uMuQIUPsxIkT
 
UQ8LAJBKP/74o9sH7dmzp6uNfsMNN7h9UnIXASAsmre/++47mzp1qpUoUcJ9
 
jB071tUFAACERTktn376qctZ1Bpd/aO3bNkS9bAAAKmkNfrBgwdt3LhxVqBA
 
AatYsaK9+uqr1HQBgAApd3HhwoWub5HqdPXu3Zt+dAAQIK3Ft2/f7vJbVNOl
 
du3aNmfOHPZFASBAyl189913rWrVqnbppZfa8OHDXY86AEBYlLu4fv1669q1
 
q2XNmtX1vKAfHQCER7GVo0eP2ksvveT6RZcuXdqeeeYZaroAQICUd75ixQpr
 
2bKl5ciRwxITE23Xrl1RDwsAkEqq3bJv3z57/PHHLW/evFa5cmV74403yF0E
 
gACpH92CBQvsmmuusXz58ln//v1dHAYAEBatxXU+VP3odF5UOenLli0jdxEA
 
AnTq1ClLSkqyChUqWNGiRe2xxx5z+YwAgLAopyU5Odluv/12t0Zv3bo1/egA
 
IECKrRw5csSef/55K1y4sF1xxRXux8pRBwCERXO31uidOnWyzJkzW4cOHWz/
 
/v1RDwsAEAftjX777bd2zz33WKZMmaxhw4ZubxQAEKaUlBRX2+Xqq6+2/Pnz
 
u7pdymsEAIRHZ4327NljjzzyiOXOnft0/2jyGAEgTFqXL1myxPUaVW1d1e/a
 
vXt31MMCAMTB579MnDjR5acnJCTYpEmTWKsDQKCUp7527Vpr3769ZcmSxW6+
 
+WZq7AJAoLQmP378uE2fPt3Kly/vau2OHj2aGl4AECjN31u3brX777/fsmfP
 
7uq+LFq0KOphAQDipDovc+fOtTp16riau/369XOxdgBAeJTbqLOkY8aMcTV3
 
q1WrZjNnzmS/FAAC9cMPP9gnn3ziepEqBqP6Xtu2bYt6WACAOPi+pMpnLF68
 
uJUqVcrGjx/vetsBAMKj+l4bNmywHj16uPpeWrN/9tlnUQ8LABAn1YJRr4xK
 
lSpZoUKFbOjQoXby5MmohwUAiIP2S3fu3GkPPvig5ciRw+rVq2cffvhh1MMC
 
AMRJtWAWL15sTZo0sVy5clnv3r3t4MGDUQ8LABAH7ZceOnTIJkyYYAULFrQr
 
r7zSpk6dyvlSAAjUmbVg2rVrZxs3box6WACAOPhaMK+++qqVLFnSLr/8cnvy
 
ySfJbQSAQPk+d3379rWLL77Y1VpfsWJF1MMCAMTp1KlTNmfOHKtVq5YVKFDA
 
Bg8ebCdOnIh6WACAOCi3cd++fTZy5EjXD+mqq66yWbNmRT0sAECcVAtm2bJl
 
p2vBdO7c2fbu3Rv1sAAAcfB97p577jl3trRs2bL24osvktsIAIFSbmNycrIl
 
Jia6WjDqc7d+/fqohwUAiIPW6tobVV31ChUquD53o0aNcnEZAEB4tF+6Y8cO
 
GzhwoDuH1LBhQ/rcAUDA1Odu3rx5ds0117haMH369HF11wEA4VEM5sCBAzZ6
 
9Gg3p1epUsWmT59OnzsACJTqA+g8acuWLS1r1qzWqVMn2759e9TDAgDEQWvy
 
Y8eO2eTJk12fu2LFitkTTzzh4u0AgPAoN111Gu+++26X23jTTTe5XEcAQHh8
 
XF35jIq/qB/SwoULox4WACAOykv/+OOPrXHjxq7HXbdu3VwfDQBAWBQ33717
 
t40YMcLV9dIa/aOPPiL3BQACpPq7SUlJlpCQcLr+rn4NABCWH3/80e2N9urV
 
y8XRmzZtamvWrGGNDgABOnnypL388stWpEgRK1GihI0bN87V9wIAhEVnjVav
 
Xm1t2rRxa/TbbrvNtm7dGvWwAACppNiK8lrGjh1refLkserVq9tbb71FDXUA
 
CND3339vc+fOdX1JVeeld+/erk8GACAsvsbukCFDLFu2bNagQQNbvHgx+6IA
 
ECDlKb755pt2xRVXWOHChV1eOr0wACA8yl386quvrGvXrq4PRosWLeyLL76I
 
elgAgDgcP37cJk2a5HpLly9f3qZMmULuIgAESPGVJUuWWJMmTSx79ux2++23
 
265du6IeFgAglXzdxTFjxljOnDmtRo0aNnv2bHIXASBAyl2cM2eOy0PPmzev
 
DRgwwMVhAABh0Vpc50Pvu+8+ty/asGFDW7ZsGbmLABAg1XSZNm2a60lXqlQp
 
e+aZZ4i5AECAVNNl5cqVrhedetLdcssttmXLlqiHBQBIJcVWjh49ahMmTHDn
 
/6tUqWIzZsygdzQABEj7ovPnz7c6deq4/kU9e/a0w4cPRz0sAEAqKV6+bdu2
 
0/ui9KMDgHCppsusWbPcWdGiRYvayJEjXWwdABAWnfVPTk62Tp06WaZMmaxZ
 
s2bu5wCA8Ogskeq4XHrppVa2bFl78cUXyV0EgAApvqLzRFqbq6ZLly5d7ODB
 
g1EPCwCQSspR3Lt3rz366KOWI0cOq1atmiUlJbEvCgAB8v3oVJ8rX758NnDg
 
QLdXCgAIi+LlmzZtsj59+rh9UfWjU11dAEB4UlJS3BlR9aMrXry4Pfnkk66n
 
EQAgLMpdXLt2rd1666128cUXW9u2bd15IwBAWLT/qfP+48ePd3XRExISbPLk
 
yeyLAkCAtEZfs2aNtWvXztVdvOOOO+zYsWNRDwsAEAftjap2br9+/eyiiy6y
 
+vXr2+LFi6MeFgAgTsphnDdvntWtW9fy5Mnj6nbp1wAA4dFZo/3799vo0aNd
 
nfSqVavazJkziakDQKBUE2DFihWun1G2bNksMTHRduzYEfWwAABx0Jrc1+5S
 
bV31HX322WdZqwNAoHTG6Msvv7Q777zT5anfeOON9vnnn0c9LABAnFTf5e23
 
37aKFStaoUKF7OGHH6bOLgAESvP31q1bbcCAAa7ui3JhPvzww6iHBQCI0w8/
 
/GALFy50dbxy5szpctepzwgAYdK+6KFDh+zpp5929QIUh3nttdfYLwWAQCm3
 
cfXq1da6dWvLkiWLq++l86YAgDCdPHnSrc9LlCjhPlTni7U6AIRJuY0bNmyw
 
u+66y9WCady4sa1cuTLqYQEA4qS90Xfffdf1Ji1QoIANGzbM1XIEAIRHtWB2
 
7txpgwcPdnH1mjVr2nvvvRf1sAAAcVJu46JFi+zaa6+1HDlyWK9evVysHQAQ
 
Hu2Lqk/GxIkTrWDBgla+fHmbOnUq+6UAEKjYfkiqBaMcR+2fAgDCpHjL9OnT
 
rUyZMlasWDF76qmnXLwdABAe1YLZtGmTi6crt7FRo0a2dOnSqIcFAIiTetp9
 
8MEHdvXVV1u+fPls0KBB9LkDgEAp1rJnzx5Xgzd79uxWvXp1V5sXABAm5TYq
 
5tKkSRPX565bt2525MiRqIcFAIiDchi/++47mzRpkhUpUsTKlSvnfkxuIwCE
 
SbmN69ats44dO7r9UvW5++KLL6IeFgAgTikpKfbWW29ZQkKC60v9+OOPu7pf
 
AIDw+D539957r2XOnNnq16/v+iMBAMKkPEb1K61du7blyZPH9THV+h0AEB7l
 
Nu7fv99GjRrlepeqJq/iMQCAMKnP3fLly6158+auHm9iYqLt27cv6mEBAOJ0
 
4sQJV6vxsssuc/Vgnn/+eWrBAECglO+yfv1669y5s2XKlMmaNm3q6jgCAMKk
 
PnezZs2yypUrW40aNWz27NlRDwkAECd/vnTVqlX20UcfuXgMACBsiqPrg1oB
 
AAAAAAAAAAAAAACcX/8L6YKfvQ==
 
"], {{0, 347.}, {373., 0}}, {0, 255},
 
ColorFunction->RGBColor,
 
ImageResolution->72],
 
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
 
Selectable->False],
 
DefaultBaseStyle->"ImageGraphics",
 
ImageSize->{57.40625, Automatic},
 
ImageSizeRaw->{373., 347.},
 
PlotRange->{{0, 373.}, {0, 347.}}]), 
 
     CloudGet["https://wolfr.am/KR7FBcsM"]}], MoleculeEquivalentQ]]

Something else that’s new in 12.1—and a first sign of something big to come—is the ability to import data about molecular orbitals:

Import["ExampleData/Pyridinecarbonitrile_MO_25_29.cub", "Graphics3D"]

Making the Data Repository Easy

We launched the Wolfram Function Repository in June 2019, and there are already 1146 functions published in it. One of the innovations in the Function Repository is a very streamlined process for submitting new functions, applicable both for the public Function Repository, and for individual deployment on a single machine, or in the cloud.

In Version 12.1 we’re introducing a new, streamlined submission mechanism for the Data Repository. File > New > Repository Item > Data Repository Item gives you:

Then if you’ve got, say, a Dataset, you just insert it in the notebook, then add examples (using the Insert ResourceObject button to insert references to the object you’re creating). When you’re done, press Deploy, and you can deploy locally, or privately or publicly to the cloud. Lots of checking just happens automatically (and if there’s something wrong you’ll usually get a suggestion about how to fix it).

My goal was to make it so that a simple Data Repository entry could be created in just a few minutes, and I think we’ve streamlined and automated things to the point where that’s now possible.

External Connectivity

We want the Wolfram Language to provide a consistent computational representation of as much as possible. And that means that in addition to things like the molecules we just discussed, we want our language to be able to represent—and seamlessly interact with—all the other kinds of computational systems that exist in the world, whether they be programs, languages, databases or whatever. The list of kinds of things we can deal with is very long—but in Version 12.1 we’ve made some significant additions.

The Wolfram Language has been able to call programs in other languages through what’s now WSTP since 1989, but in recent years we’ve been working to make it ever easier and more automatic to do this. And for example in Version 11.2 we introduced ExternalEvaluate, which provides a high-level way to directly evaluate code in external languages, and, whenever possible, to get results back in a symbolic form that can be seamlessly used in the Wolfram Language.

In Version 12.1 we’ve added Julia, Ruby and R to our collection of external languages. There are all sorts of practical issues, of course. We have to make sure that an appropriate installation exists on a user’s computer, and that the data types used in programs can be meaningfully converted to Wolfram Language.

But in the end it’s very convenient. In a notebook, just type > at the beginning of a line, select your language, and enter the code, and evaluate:

> [1,2,3+3] 

But this doesn’t only work interactively. It’s also very convenient programmatically. For example, you can create a function in the external language, that is then represented symbolically in the Wolfram Language as an ExternalFunction object, and which, when called, runs code in the external language:

> def square(x)
 
  x * x
 
end

% /@ {45, 135, 678, 34}

For each different language, however, one’s dealing with a whole new world of structures. But since we have built-in support for ZeroMQ (as well as having a connection to Jupyter available), we at least have the plumbing to deal with a very wide range of languages.

But particularly for languages like Python where we have full built-in connectivity, one of the significant things that becomes possible is to have functions that work just like standard Wolfram Language functions but are fully or partly implemented in a completely different language. Of course, to have this work seamlessly requires quite a bit of system support, for automated installation, sandboxing, etc. And for example, one of the things that’s coming is the ability to call functions containing Python code even in the Wolfram Cloud.

In addition to external languages, another area of expansion is external storage systems of all kinds. We’ve already got extensive support for the Bitcoin and Ethereum blockchains; in Version 12.1 we added support for the ARK blockchain. In addition, we introduced support for two external file storage systems: IPFS and Dropbox.

This is all it takes to put a Spikey into the globally accessible IPFS file system:

ExternalStoragePut[CloudGet["https://wolfr.am/L9rTMCn6"], 
 
 ExternalStorageBase -> "IPFS"]

Here’s the content identifier:

%["CID"]

And now we can get our Spikey back:

ExternalStorageGet["QmcNotbm3RZLv7caaPasU8LiHjNCCuuEemrCgbLAsN49TZ"]

You can do the same kind of thing with Dropbox, and after authentication (either through a browser, or through our new SystemCredential mechanism, discussed below) you can put expressions or upload files, and they’ll immediately show up in your Dropbox filesystem.

Given the framework that’s been introduced in 12.1, we’re now in a position to add connections to other external file storage systems, and those will be coming in future versions.

In addition to plain files, we also have a sophisticated framework for dealing with relational databases. Much of this was introduced in Version 12.0, but there are some additions in 12.1. For example, you can now also connect directly to Oracle databases. In addition, there are new functions for representing relational set operations: UnionedEntityClass, IntersectedEntityClass, ComplementedEntityClass.

And, of course, these work not only on external databases but also on our own built-in knowledgebase:

SortedEntityClass[UnionedEntityClass[
 
    !(*
 
NamespaceBox["LinguisticAssistant",
 
DynamicModuleBox[{Typeset`query$$ = "EU", Typeset`boxes$$ = 
 
        TemplateBox[{""European Union"", 
 
RowBox[{"EntityClass", "[", 
 
RowBox[{""Country"", ",", ""EuropeanUnion""}], "]"}], 
 
          ""EntityClass["Country", "EuropeanUnion"]"", 
 
          ""countries""}, "EntityClass"], 
 
        Typeset`allassumptions$$ = {{
 
         "type" -> "Clash", "word" -> "EU", 
 
          "template" -> "Assuming "${word}" is ${desc1}. Use as 
 
${desc2} instead", "count" -> "2", 
 
          "Values" -> {{
 
            "name" -> "CountryClass", 
 
             "desc" -> "a class of countries", 
 
             "input" -> "*C.EU-_*CountryClass-"}, {
 
            "name" -> "Unit", "desc" -> "a unit", 
 
             "input" -> "*C.EU-_*Unit-"}}}}, 
 
        Typeset`assumptions$$ = {}, Typeset`open$$ = {1, 2}, 
 
        Typeset`querystate$$ = {
 
        "Online" -> True, "Allowed" -> True, 
 
         "mparse.jsp" -> 0.363881`6.012504373043238, 
 
         "Messages" -> {}}}, 
 
DynamicBox[ToBoxes[
 
AlphaIntegration`LinguisticAssistantBoxes["", 4, Automatic, 
 
Dynamic[Typeset`query$$], 
 
Dynamic[Typeset`boxes$$], 
 
Dynamic[Typeset`allassumptions$$], 
 
Dynamic[Typeset`assumptions$$], 
 
Dynamic[Typeset`open$$], 
 
Dynamic[Typeset`querystate$$]], StandardForm],
 
ImageSizeCache->{232., {7., 15.}},
 
TrackedSymbols:>{
 
          Typeset`query$$, Typeset`boxes$$, Typeset`allassumptions$$, 
 
           Typeset`assumptions$$, Typeset`open$$, 
 
           Typeset`querystate$$}],
 
DynamicModuleValues:>{},
 
UndoTrackedVariables:>{Typeset`open$$}],
 
BaseStyle->{"Deploy"},
 
DeleteWithContents->True,
 
Editable->False,
 
SelectWithContents->True]), 
 
    EntityClass["AdministrativeDivision", "AllUSStatesPlusDC"]], 
 
   "Population" -> "Descending"][{"Name", "Population"}] // Dataset

We’ve been very active over the years in supporting as many file formats as possible. In Version 12.1 we’ve added the popular new HEIF image format. We’ve also updated our DICOM importer, so you can take those CT scans and MRIs and immediately start analyzing them with Image3D and our 3D image processing.

Like, this is part of our director of R&D’s knee:

knee = Import["knee_mr/DICOMDIR", {"Image3D", 1, 1, 1}];
 
Image3D[knee, ColorFunction -> (Blend[{{0., 
 
RGBColor[0.05635, 0.081, 0.07687, 0.]}, {0.0777045, 
 
RGBColor[0.702347, 0.222888, 0.0171385, 0.0230167]}, {0.3, 
 
RGBColor[1., 0.6036, 0., 0.303215]}, {0.66, 
 
RGBColor[1., 0.9658, 0.4926, 0.661561]}, {1., 
 
RGBColor[1., 0.6436, 0.03622, 1.]}}, #]& )] // ImageAdjust // 
 
 Blur[#, 3] &

In Version 11.3, we added MailServerConnect for connecting directly to mail servers. In 12.1, we’ve added a layer of caching, as well as a variety of new capabilities, that make the Wolfram Language uniquely powerful for programmatic mail processing. In addition, in Version 12.1 we’ve upgraded our capabilities for importing mail messages from EML and MBOX, in particular adding more controls for attachments.

Yet another new feature of 12.1 is stronger support for ZIP and TAR files, both their creation through CreateArchive, and their extraction through ExtractArchive—so you can now routinely handle tens of thousands of files, and gigabytes of data.

Whenever one is connecting to external sites or services, there are often issues of authentication. We’d had some nice symbolic ways to represent authentication for some time, like SecuredAuthenticationKey (that stores OAuth credentials). But for example in cases where you’ve got to give a username and password, there’s always been the issue of where you store those. In the end, you want to give them as part of the value for an Authentication option. But you don’t want to have them lying around in plaintext.

And in Version 12.1 there’s a nice solution to this: SystemCredential. SystemCredential ties into your system keychain—the encrypted storage that’s provided by your operating system, and secured by the login on your computer.

It’s as easy as this to store things in your system keychain:

SystemCredential["secret"] = "it's a secret"

SystemCredential["secret"]

Paclets for All

Length[PacletFind[]]

In my Wolfram Language system right now, I have 467 paclets installed. What is a paclet? It’s a modular package of code and other resources that gets installed into a Wolfram Language system to deliver pretty much any kind of functionality.

We first invented paclets in 2006, and we’ve been increasingly using them to do incremental distribution of a great many pieces of Wolfram Language functionality. Paclets are versioned, and can be set to automatically update themselves. Up until now, paclets have basically been something that (at least officially) only we create and distribute, from our central paclet server.

But as of Version 12.1, we’re opening up our paclet system so anyone can use it, and we’re making it a fully documented and supported part of the Wolfram Language. Ultimately, a paclet is a file structure that contains assets or resources of various kinds, together with a special PacletInfo.wl file that defines how the paclet should integrate itself into a Wolfram Language system.

A paclet can set up code to execute at startup time. It can set up symbols whose definitions will be autoloaded. It can install documentation. It can put items into menus. And in general it can set up assets to be used in almost any part of the fairly complex structure that is a deployed Wolfram Language system.

Typically a paclet is distributed as a single archive file, and there are many ways someone can get such a paclet file. We maintain a central paclet server that’s used by the Wolfram Language system to get automatic downloads. But in the near future, we’re also going to have a full paclet repository through which users will be able to distribute paclets. (We’re also going to make it possible for Wolfram Enterprise Private Clouds to have their own paclet repositories.)

I might mention how I see the Wolfram Paclet Repository relating to our Wolfram Function Repository. The Function Repository is built to extend the functionality of the Wolfram Language one function at a time, always maintaining the overall structure and consistency of the language. The Paclet Repository will let people distribute complete environments that may serve some particular purpose, but may not maintain the structure and consistency of the overall language. Paclets will be extremely useful, and we intend them to be as freely used as possible. So whereas the Wolfram Function Repository has a curation process to ensure a certain level of design consistency, we plan to make the Wolfram Paclet Repository basically completely open.

The goal is to allow a rich ecosystem of user-contributed paclets to develop. The Paclet Repository will serve as a smooth distribution channel for Wolfram Language material. (And by the way, I think it will be quite common for functions in the Function Repository to actually be based on code that’s distributed through the Paclet Repository—with the Function Repository serving as a streamlined and structured presentation mechanism for the functions.)

In Version 12.1 there are a variety of functions for creating and managing paclets. With the Wolfram Language, PacletObject is the symbolic representation of a paclet. Here’s a trivial example of what a paclet might be like:

PacletObject[<|"Name" -> "TrivialPaclet", "Version" -> "1.0", 
 
  "Extensions" -> {{"Kernel", "Context" -> "TrivialPackage`"}}|>]

This can then be packaged into a .paclet file using CreatePacletArchive—and this file can then be distributed just as a file, or can be put on a paclet server. Once someone has the file, it’s just a question of using PacletInstall, and the paclet will come to life, inserting the necessary hooks into a Wolfram Language system so that its contents are appropriately used or exposed.

And Even More…

Well, that’s already a lot. But there’s even more too. FaceAlign. FindImageText. Around in Classify and ListPlot3D. SubsetCount. GenerateFileSignature. RSA digital signatures. Much faster MailSearch. Initialization tied to notebooks or cells. And so on. Here’s the whole list. Check it out!

Leave a Reply

Your email address will not be published. Required fields are marked *

Fill out this field
Fill out this field
Please enter a valid email address.
You need to agree with the terms to proceed

Menu